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1 Free Modules

1.1 Free modules over rings

Let R be a commutative ring.

Definition 1.1. An R-module M is free on a subset X if for any R-module N and map
f : X → N , there exists a unique R-module homomorphism φf : M → N such that
φf |X = f .

Example 1.1. If X is a set, we can construct the free module on X: FX =
⊕

x∈X R · x.

We can think of this as a functor F from Set to R-mod. With this viewpoint, if
f : X → Y , then F (f) : FX → FY is given by F (f)(

∑n
i=1 aixi) =

∑n
i=1 aif(xi). So for

F : Set→ R-mod,
HomSet(X,N) ∼= HomR-mod(FX , N),

where this isomorphism is natural. That is, F is left-adjoint to the forgetful functor from
R-mod to Set.

Lemma 1.1. An R-module M is free on X if and only if

1. X generates M as an R-module (i.e. for all m ∈ M , there exist x1, . . . , xn ∈ X and
a1, . . . , an ∈ R such that m =

∑
aixi)

2. X is R-linearly independent (i.e. if
∑n

i=1 aixi = 0 with s1, . . . , xn ∈ X distinct, then
ai = 0 for all i).

Proof. If M is free on X¡ then there exists a unique isomorphism from M to FX , induced
by the identity on X. FX satisfies these two properties, so M does.

If M satisfies the two properties, then there exists a unique φ : FX → M sending
x 7→ X (since X ⊆ M). Property 1 implies that φ is surjective, and property 2 implies
that φ is injective.

1.2 Bases and vector spaces

Definition 1.2. If X generates the R-module M and is linearly independent, we call it a
basis of the M .

Theorem 1.1. Every vector space V over a field has a basis. In fact, every linearly
independent set in V is contained in a basis, and every spanning set contains a basis.

Proof. We will prove the first statement; the other two statements follow by a similar
argument. Let V be an F -vector space, where F is a field. Conide the set S of subsets X
of V that are F -linearly independent. (S,⊆) is a partially ordered set (poset). If C is a
chain,

⋃
X∈C X is linearly independent, so it is an upper bound on C. By Zorn’s lemma,

S has a maximal element B. Let W = span(B). If v ∈ V \W , then B ∪ {v} is linearly
independent, contradicting the maximality of B. Then V = W , so B is a basis.
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Example 1.2. The field condition is very important; here are counterexamples for general
rings. Let R = Z and M = Z. Then 2 ∈ Z, but 2 is not contained in a basis of Z. The set
{2, 3} spans Z, but does not contain a basis.

Proposition 1.1. Let V be an F -vector space with a basis of n elements. Let Y ⊆W .

1. If Y spans V , then |Y | ≥ n.

2. If Y is linearly independent, then |Y | ≤ n.

3. If |Y | = n, then Y is linearly independent iff Y spans V .

Remark 1.1. The first two properties hold for free modules with a basis of n elements as
well, but the 2nd property becomes harder to prove. For the third property, in the general
case, we just have that if Y spans and |Y | = n, then Y is linearly independent.

Corollary 1.1. If ϕ : V → W is an F -linear transformation of finite-dimensional vector
spaces over F , then dimF (V ) = dimF (ker(ϕ)) + dimF (im(ϕ)). In particular, if dimV =
dimW , then ϕ is injective iff ϕ is surjective iff ϕ is an isomorphism.

1.3 Cardinality of bases

Theorem 1.2. If X and Y are sets and FX ∼= FY , then X and Y have the same cardinality.

Proof. Suppose |Y | ≥ |X| and first suppose that X is infinite. It suffices to show FX
has no basis of cardinality > |X|. Suppose B ⊆ FX is a basis of FX . Every x ∈ X
is a finite linear combination of some elements in B; let Bx be the set of these. Then
|
∐
x∈X Bx| ≥ |

⋃
x∈X B| and it generates FX , so we can get the upper bound on cardinality

|B| ≤ |Z×X| = |X|. Therefore, FX has no basis of cardinality > |X|.
If Y is finite, let m be a maximal ideal of R. Then F = R/m is a field, and

FX/mFX ∼=

(⊕
x∈X

R

)
/m

(⊕
x∈X

R

)
∼=
⊕
x∈X

F.

The same is try for FY . The isomorphism FX ∼= FY induces the isomorphism of F -vector
spaces FX/mFX ∼= FY /mFY , which then have bases of cardinality |X| and |Y |. Y is finite,
so X is finite and has cardinality |X| = |Y |.
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2 Introduction to Field Theory

2.1 Field extensions

Definition 2.1. A field E is an extension field (or extension) of a field F if F is a
subfield of E.

We often write E/F to denote that E is an extension of F . F is called the ground
field of E/F . E is an F -vector space. If E is finite dimensional over F , we say that E/F
is a finite extension.

Definition 2.2. Let E be finite dimensional over F . Then the degree [E : F ] is dimF (E).

Definition 2.3. Let S ⊆ E. We say S generates E/F if E is the smallest subfield of E
containing F and S.

If S = {α1, . . . , αn}, we write E = F (α1, . . . , αn).

Lemma 2.1. Every field F is an extension of Q if char(F ) = 0 and Fp if char(F ) = p.

Proof. Q or Fp here is the subfield generated by 1.

Definition 2.4. An intermediate field E′ in E/F is a subfield of E containing F .

Example 2.1. Q(i) and Q(
√

2) are intermediate fields of C/Q.

Note that Q(i) = Q[i] ⊆ C and Q(
√

2) = Q[
√

2] ⊆ C. This is not always the case.

Example 2.2. Let Q(x) = {f/g : f, g ∈ Q[x], g 6= 0}. The field of rational functions is
Q(Q[x]). Q(x) 6= Q[x]

Lemma 2.2. Let E/F be an extension and α ∈ E. Then F (α) = Q(F [α]).

Proof. F (α) is the smallest subfield containing F ∪ {α}. F [α] is the smallest subring
containing F ∪{α}. The inclusion ι : F [α]→ F (α) is injective and induces an isomorphism
Q(F [α])→ F (α) of fields.

2.2 Algebraic extensions, minimal polynomials, and splitting fields

Definition 2.5. If E/F is an extension and α ∈ E, then α is algebraic (over F ) if
F [α] = F (α) and transcendental otherwise. E/F is algebraic if every α ∈ E is algebraic
over F and transcendental otherwise.

Proposition 2.1. If α ∈ E is algebraic over F . then there exists a unique monic irreducible
polynomial f ∈ F [x] such that f(α) = 0. Moreover, F [x]/(f) ∼= F (α) by sending g(x) 7→
g(α).
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This f is called the minimal polynomial of α over F .

Proof. Note that 1/α = g(α) for some g ∈ F [x]. Then αg(α)− 1 = 0. Set h = xg(x)− 1.
There exists a monic irreducible f | h such that f(α) = 0. If p ∈ F [x] satisfies p(α) = 0
and f - p, then (f, p) = (1). But the ideal generated by α is not trivial. So f | p. The last
statement follows.

Corollary 2.1. If α is algebraic over F , then F (α)/F is finite of degree equal to the degree
of the minimal polynomial of α with basis {1, α, . . . , αn−1} over F .

Proposition 2.2. If E/F is finite and α ∈ E, then α is algebraic.

Proof. The set {1, α, . . . , α[E:F ]} is linearly depedent. The relation gives a polynomial with
α as a root.

Corollary 2.2. If E/F is finite, then E = F (α1, . . . , αn) for some α1, . . . , αn ∈ E.

Theorem 2.1 (Kronecker). Given nonconstant f ∈ F [x], there exists E/F such that E
contains a root of F .

Proof. Take F [x]/(g), where g is monic, irreducible, and g | f .

Definition 2.6. A splitting field for nonconstant f ∈ F [x] is a field E in which f factors
into a product of linear polynomials.

Corollary 2.3. For any nonconstant f ∈ F [x], there exists a splitting field for f over F .

Example 2.3. A splitting field for x3−2 (over Q) in C is Q( 3
√

2, ω 3
√

2, ω2 3
√

2) = Q(ω, 3
√

2),
where ω = e2πi/3.

2.3 Degrees of extensions

Theorem 2.2. If K/E and E/F are extensions, A is a basis of E/F , and B is a basis of
K/E, then AB ∼= A×B is a basis of K/F .

Proof. If γ ∈ K, then γ =
∑
cjβj , where cj ∈ E. Then cj =

∑
di,jαi, where αi ∈ f . So

γ =
∑

i

∑
j di,jαiβj . So AB spans K. If

∑
(
∑
ai,jαi)βj = 0, then

∑
ai,jαi = 0 for all j.

Then ai,j = 0 for all i, j.

Corollary 2.4. If K/E and E/F are finite, then [K : F ] = [K : E][E : F ].

Definition 2.7. Let E,E′ ⊆ K be subfields. The compositum EE′ is the smallest
subfield of K containing E and E′.

Example 2.4. If E/F , then E(α) = EF (α).

Example 2.5. F (α, β) := F (α)(β) = F (α)F (β).
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Proposition 2.3. If E,E′ are finite over F and contained in K, A is a basis of E/F , and
B is a basis of E′/F , teen AB spans EE′.

Proof. LetA = {α1, . . . , αm} andB = {β1, . . . , βn}. Then EE′ = F (α1, . . . , αm, β1, . . . , βn) =
F [α1, . . . , αm, β1, . . . , βn]. Note that αi11 · · ·αimm ∈ E is a linear combination over F of the
αis. Similarly for the βjs in E′. So the αiβjs span EE′.

Corollary 2.5.
[EE′ : F ] ≤ [E : F ][E′ : F ].

Corollary 2.6. If [E : F ] and [E′ : F ] are relatively prime, we get equality.

Proof. [E : F ] and [E′ : F ] divide [EE′ : F ].

Example 2.6. Consider Q( 3
√

2, ω3 3
√

2), where ω2 + ω + 1 = 0. Then

[Q(
3
√

2) : Q][Q(ω3 3
√

2) : Q] = 9, [Q(
3
√

2, ω) : Q] = [Q(
3
√

2) : Q][Q(ω) : Q] = 6.

Proposition 2.4. Let Ei be subfields of K containing F for all i in some index set I. The
the compositum E of all Ei is

⋃
F (α1, . . . , αn), where n ≥ 0, and each αj is in some Ei.
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3 Finite Fields and Cyclotomic Fields

3.1 Finite fields

Proposition 3.1. Let F be a field and n ≥ 1. Let µn(F ) be the n-th roots of unity in F .
Then µn(F ) is cyclic of order dividing n.

Proof. Let m be the exponent of µn(F ). Then xm− 1 = 0 for all x ∈ µn(F ). So |µn(F )| ≤
m. Then |µn(F )| = m.

Lemma 3.1. Let F be a finite field. Then |F | is a power of char(F ).

Proof. Let p = char(F ). Then F is a vector space over Fp. Then |F | = p[F :Fp].

Corollary 3.1. If |F | = pn, then F× is cyclic with F× = µpn−1(F ).

Corollary 3.2. (Z/pZ)× ∼= Z/(p− 1)Z.

Lemma 3.2. Let char(F ) = p and α, β ∈. Then (α+ β)p
k

= αp
k

+ βp
k
.

Proof. This follows from the Binomial theorem.

Theorem 3.1. Let n ≥ 1. Then there exists a unique extension Fpn of Fp of degree n up
to isomorphism. If E/Fp is a finite extension of degree a multiple of n, then E contains a
unique subfield isomorphic to Fpn. Moreover, Fpn ⊆ Fmp ⇐⇒ n | m.

Proof. Let Fpn be the splitting field of xp
n − x over Fp. Let F = {α ∈ FpnLαp

n
= α}.

Note that F is closed under addition by the lemma and is closed under multiplication and
taking inverses of nonzero elements. So F is a field. In fact, F is a splitting field of the
polynomial, so F = Fpn .

We know that |Fpn | ≤ pn because the polynomial xp
n − x has at most pn roots; we

want equality. Let a ∈ F×pn . Consider the polynomial g(x) = (xp
n − x)/(x − a). Then

g(x) =
∑pn−1

i=1 ai−1xp
n−i. Then

g(a) =

pn−1∑
i=1

ap
n−1 = (pn − 1)ap

n−1
= (0− 1)1 = −1 6= 0.

So xp
n − x has pn distinct roots, giving us [Fpn : Fp] = n.

Let E have degree m, where n | m. Then E ∼= Fpm , so E× = µpm−1(E). Since
µpn−1(E) ⊆ µpm−1(E), we have F ⊆ E with F ∼= Fpn .

Example 3.1. [F9 : F3] = 2. We can compute that x2 + 1, x2 + x− 1, and x2 − x− 1 are
the quadratic irreducible polynomials over F3. F9 is the splitting field of each. We get

x9 − x = (x2 + 1)(x2 + x− 1)(x2 − x− 1)x(x+ 1)(x− 1).
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Proposition 3.2. Let q be a power of p. Let m ≥ 1, and let ζm be a primitive m-th root
of unity in an extension of Fq. Then [Fq(ζm) : Fq] equals the order of q in (Z/mZ)×.

Proof.

` = [Fq(ζm) : Fq] ⇐⇒ Fq(ζm) = Fq`
⇐⇒ m | q` − 1 and m - qj−1 for all j < `

⇐⇒ q has order ` in (Z/mZ)×.

Proposition 3.3. Let m ≥ 1 and m = pr11 · · · p
rk
k , where the pi are distinct primes. THen

(Z/mZ)× ∼= (Z/pr11 Z)× × · · · × (Z/prkk Z)×, and

(Z/prZ)× ∼=

{
Z/pr−1Z× Z/(p− 1)Z p odd

Z/2r−2Z× Z/2Z p = 2, r ≥ 2.

Proof. The map (Z/prZ)× → (Z/pZ)× has kernel

1 + pZ
1 + prZ

⊆ (Z/prZ)×.

If p is odd,
(1 + pk)p = 1 + pk+1 + · · ·+ (pk)p.

Then kp > k + 1 ⇐⇒ k(p − 1) > 1 ⇐⇒ k ≥ 2 or p ≥ 3. So if p is odd, then
(1 + pk)p ∼= 1 + pk+1 (mod p)k+2. This argument gives us that 1 + p has order pr−1 in
(Z/prZ)×.

For p = 2, look at
1 + 4Z
1 + 2rZ

.

Then (1 + 4)2i ∼= 1 + 2i+2 (mod 2)i+3. So 1 + 4 has order 2r−2. This gives us that
Z/2rZ = 〈−1〉+ (1 + 4Z)/(1 + 2rZ) ∼= Z/2Z× Z/2r−2Z.

3.2 Cyclotomic fields and polynomials

Let ζn be a primitive n-th root of 1 in an extension of Q (e.g. ζn = 2πi/n ∈ C) such that

ζ
n/m
n = ζm for all m | n.

Definition 3.1. Q(ζn) is the n-th cyclotomic field over Q.

Remark 3.1. Q(ζn) = Q(µn), where µn is the set of n-th roots of unity in C.

Definition 3.2. The n-th cyclotomic polynomial Φn is the unique monic polynomial
in Q[x] with roots the primitive n-th roots of 1.
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Note that

Φn =
n∏
i=1

(i,n)=1

(x− ζin),

xn − 1 =
∏
d|n
d≥1

Φd.

So Φn ∈ Q[x] by induction. The degree of Φn is ϕ(n) = |{1 ≤ i ≤ n : (i, n) = 1}|.
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4 Möbius Inversion, Cyclotomic Polynomials, and Field Em-
beddings

4.1 Möbius inversion and cyclotomic polynomials

Definition 4.1. The Möbius function µ : Z≥1 → {−1, 0, 1} is given by

µ(n) =

{
(−1)k n is a product of k distinct primes

0 otherwise.

Lemma 4.1. For n ≥ 2, ∑
d|n

µ(d) = 0.

Proof. First, ∑
d|n

µ(d) =
∑
d|m

µ(d),

where m is the product of the distinct primes dividing n. Say there are k of them. Then∑
d|m

µ(d) = 1− k +

(
k

2

)
+ · · ·+ (−1)k = (1− 1)k = 0.

Theorem 4.1 (Möbius inversion formula). Let A be an abelian group, and let f : Z≥1 → A.
Define g : Z≥1 → A by g(n) =

∑
d|n f(d). Then

f(n) =
∑
d|n

µ(d)g(n/d).

Proof. By the lemma,∑
d|n

µ(n/d)g(d) =
∑
d|n

∑
k|d

µ(n/d)f(k)

=
∑
k|n

∑
d|n
k|d

µ(n/d)f(k)

=
∑
k|n

∑
c|n/k

µ((n/k)/c)

 f(k)

= f(n).

Corollary 4.1.

Φn =
∏
d|n

(xd − 1)µ(n/d).
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Proof. Let A = Q(x)x, and let f send d 7→ Φd. Then

g(n) =
∏

d midn

Φd = xn − 1.

Now apply the Möbius inversion formula.

Example 4.1. Φ1 = x − 1, Φ2 = x + 1 ,and Φp = xp−1 + xp−2 + · · · + x + 1, where p is
prime. If p | n, then Φpn(x) = Φn(xp). This also gives us that

Φpn = xp
n−1(p−1) + · · ·+ xp

n−1
+ 1.

If p 6= q are primes,

Φpq(x) =
Φq(x

p)

Φq(x)

(xpq − 1)(x− 1)

(xp − 1)(xq − 1)
=

Φq(x
p)

Φq(x)
.

Φ15 = x8 − x7 + x5 − x4 + x3 − x+ 1.

Theorem 4.2. Φn is irreduible in Q[x].

Proof. Suppose Φn = fg with f a monic irreducible polynoimal, and let ζ be a root of f .
For p - n prime, ζp is a root of Φn. If ζp is a root of g, then g(xp) has ζ as a root, so
f(x) | g(xp). Reduce f and g (mod p). We get f, g ∈ Fp[x]. Then g(xp) = g(x)p. Then
f | gp, but f has no multiple roots in Fp, so f | g. So Φn has multiple roots (mod p)¡
which is a contradiction. So ζp is a root of f . Therefore, ζa is a root of f for all a ∈ Z and
gcd(a, n) = 1, so f = Φn.

4.2 Field embeddings

Definition 4.2. If E,E′/F and ϕ : E → E′ is an isomorphism, we sat that ϕ fixes F
if ϕ|F = idF . Elements α ∈ E and β ∈ E′, are conjugate over F if there exists an
isomorphism ϕ : F (α)→ F (β) fixing F with ϕ(α) = β.

Proposition 4.1. Let E,E′/F . Elements α ∈ E, β ∈ E′ are conjugate over F if and only
if they have equal minimal polynomials in F [x].

Proof. Let α, β be conjugate over F . Then ϕ(g(α)) = g(β) for all g ∈ F [x]. Then α, β
have the same minimal polynomial (α is a root of g(x) iff β is a root of g(x)).

If α, β haeve the same minimal polynomial f ∈ F [x], then F [x]/(f) ∼= F (α) via
x mapstoα and F [x]/(f) ∼= F (β) via x mapstoβ.

Example 4.2. The roots of x2 + 1a re ±1. There exists a field automorphism C → C
i 7→ −i fixing R, namely, complex conjugation.

14



Definition 4.3. A field embedding is a ring homomorphism of fields (necessarily injec-
tive). If ϕ : F →M is an embedding and E/F is an extension, then Φ : E →M extends
ϕ if Φ|F = ϕ.

Example 4.3. Let ι : Q→ R be the natural inclusion map. There are two field embeddings
extending ι; these are Q(

√
2→ R sending

√
2 7→

√
2. There are no extensions to Q(i)→ R.

Theorem 4.3. Let E/F be an extension, and let α ∈ E be algebraic over F . Let ϕ : F toM
be an embedding, and let ϕ̃ : F [x] → M [x] be the induced map. Let f be the minimal
polynomial of α. Then the extensions Φ : F (α)→ M of ϕ are in 1-1 correspondence with
the roots of ϕ̃(f) in M via Φ 7→ Φ(α).

Proof. If p̃(f) has a root β in M , let evβ be evaluation at β. Consider eβ ◦ ϕ̃ : F [x]→M .
Then ker(eβ ◦ ϕ̃⊇(f). Since we are working in a PID, this is equality. We get

F [x]/(f) M

F (α)

∼=
Φ

where Φ(α) = β.
If Φ : F (α)→M extends ϕ, then write f =

∑n
i=0 cix

i, where n = deg(f). Then

ϕ̃(f)(Φ(α)) =
n∑
i=0

ϕ(ci)Φ(α)i = Φ(
n∑
i=0

ciα
i) = Φ(f(α)) = 0.

Corollary 4.2. Let E/F be finite, and let ϕ : F → M be a field embedding. The number
of extensions of ϕ to E →M is ≤ [E : F ].

Proof. Induct on the degree. If E = F (α), then the number of roots of irrF (α) in M is
≤ [F (α) : F ]. Then the number of extensions is ≤ [F (α) : F ] by the theorem. Consider
extensions of these; the number for each is ≤ [E : f(α)] by induction. So the number is
≤ [E : F ].

Example 4.4. We can extend ι : Q→ R to ϕ : Q(
√

2,
√

3)→ R in 4 ways. However, there
is only one way to embed Q( 3

√
2)→ R because x3 − 2 = (x− 3

√
2) · (deg(2)) in R[x].

Proposition 4.2. Let E/F be algebraic, and let σ : E → E be an embedding fixing F .
Then σ is an isomorphism.

Proof. For any β ∈ E, let f be its minimal polynomial. The restriction to the finite set
of roots σ : {roots of f in E} → {roots of f in E} is a bijection (as it is injective). So
β ∈ im(σ).
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5 Algebraic Closure

5.1 Algebraically closed fields

Definition 5.1. A polynomial splits in L[x] if it factors in L[x] as a product of linear
polynomials.

Definition 5.2. A field L is algebraically closed if every nonconstant polynomial in
L[x] has a root in L.

Proposition 5.1. If L[x] is algebraically closed, then every (nonconstant) poltnomial in
L[x] splits over L.

Corollary 5.1. If M is an algebraic extension of an algebraically closed field L, then
M = L.

Theorem 5.1 (fundamental theorem of algebra). C is algebraically closed.

Here is a proof that uses no algebra.

Proof. Let f ∈ C[x] have no roots in C. Then 1/f is holomorphic on C. Moreover, 1/f is
bounded. So 1/f is constant by Liouville’s theorem. Thus, f is constant.

Theorem 5.2. Let E/F be algebraic, and let ϕ : F → M be a field embedding with M
algebraically closed. Then there exists a field embedding Φ : E →M extending ϕ.

Proof. Let X = {(K,σ) : E/K/F, σ : K → M is an embedding extending ϕ}. Then
(K,σ) ≤ (K ′, σ′) if K ⊆ K ′ and σ′|K = σ defines a partial order on X. Let |mcC be a
chain in X. Then L =

⋃
K∈CK with τ : L → M defined as τ |K = σ for each K ∈ C is an

upper bound for C. By Zorn’s lemma, we have a maximal element (Ω,Φ).
We want to show that Ω = E. Let α ∈ E, and let f ∈ Ω[x] be its minimal polynomial

f(x) =
∑n

i=1 aix
i, where n = deg(f). Define g :=

∑n
i=1 Φ(ai)x

i ∈M [x]. M is algebraically
closed, so g has a root β ∈ M . So there exists Φ̃ : Ω(α) → M with Φ̃|Ω = Φ and α 7→ β.
Then (Ω(α), Φ̃) ≥ (Ω,Φ). So α ∈ Ω, as (Ω,Φ) is maximal.

Proposition 5.2. The set of all algebraic elements over F in an extension E/F is a
subfield of E, the largest intermediate field that is algebraic over F .

Proof. Let M be the set of algebraic elements over F in E. Let α, β ∈M . Then F (α, β)/F
is finite, so it contains α− β and α/β if β 6= 0, and F (α, β) ⊆M .

Corollary 5.2. The set Q of algebraic numbers in C is a subfield of C.
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5.2 Algebraic closure

Definition 5.3. An algebraic closure of a field F is an algebraic, algebraically closed
extension of F .

Proposition 5.3. Let K/E/F . Then K/F is algebraic if and only if K/E and E/F are
algebraic.

Proof. ( ⇐= ): Take α ∈ K, and let f ∈ E[x] be its minimal polynomial, f =
∑n

i=0 aix
i,

where ai ∈ E. Each of these ai is algebraic over F . Then F (a0, . . . , an)(α) is finite over F ,
so every element in it is algebraic over F , so α is algebraic over F .

Proposition 5.4. If F is a field and M/F is algebraically closed, then M contains a
unique algebraic closure of F , the maximal subfield F of M which is algebraic over F .

Proof. Suppose f ∈ F [x], and look at E/F , generated by the coefficients of f . E/F is
finite. If α ∈M is a foot of f , then E(α)/F is algebraic by the previous proposition, so α
is algebraic over F . Then α ∈ F .

Corollary 5.3. Q is an algebraic closure of Q.

Example 5.1. Fp :=
⋃∞
n=1 Fpn is an algebraic closure of Fp. This union makes sense

because Fpk , Fp` ⊆ Fpm , where m = lcm(k, `).

Theorem 5.3. Every field F has an algebraic closure.

Proof. Let F be a field, Ω =
∐
f Rf , where f runs over monic irreducible polynomials in

F [x] and Rf is a finite set with one element for each root of f in a splitting field. Then
F ⊆ Ω because a is the unique root of x − a. Let X = {E/F algebraic : E ⊆ Ω, α ∈ E}.
Such an α ∈ Rf , where f is in the minimal polynomial of α. X 6= ∅, since F ∈ X.

Let C be a chain in X, and let K =
⋃
E∈C E ⊆ Ω. Check yourself that K ∈ X. So C

has an upper bound. By Zorn’s lemma, we have a maximal element F ∈ X. Since F ∈ X,
it is algebraic. We claim that F is algebraically closed. Let f ∈ F [x] and g ∈ F [x] be
monic and irreducible with g | f . E = F [x]/(g) ⊆ Ω as follows: if h ∈ F [x] is monic and
irreducible with a root in E, then the distinct roots of h in E \ F inject into elements of
Rh \ F . By maximality, E = F . So F is algebraically closed.

Proposition 5.5. If M,M ′ are algebraic closures of F then there exists an isomorphism
Φ : M →M ′ fixing F .

Proof. We have an embedding F → M ′. There exists a Φ : M → M ′ extending this
inclusion. It suffices to show that im(Φ) is algebraically closed. If α ∈ M is a root of
f ∈ F [x], it maps to a root of Φ(α) of f in Φ(M) ⊆ M ′. So Φ(M) is algebraically closed,
and hence Φ(M) = M .
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6 Transcendental Extensions and Separability

6.1 Transcendental extensions

Definition 6.1. An extension K/F is purely transcendental if every α ∈ K \ F is
transcendental over F .

Proposition 6.1. F ((ti)i∈I), where I is an indexing set, is purely transcendental over F .

Proof. Here is the case of F (t)/F . Let α = f/g ∈ F (t) = F , where f, g ∈ F [t], and g 6= 0.
Then αg(x) /∈ F [x], but αg(x) ∈ F (t)[x]. Then αg(x) 6= f(x) ∈ F [x]. But f(xx) − αg(x)
has a root t, so t is algebraic over F (α). But t is transcendental over F , so α must be
transcendental over F . Thus, F (t)/F is purely transcendental.

For the case of F (t1, . . . , tn)/F , proceed by induction. For the general case, every
element in F ((ti)i∈I) is in F (t1, . . . , tn) for some i1, . . . , in ∈ I. If it is not in F , it is
transcendental by the previous case.

Proposition 6.2. Every field extension is a purely transcendental extension of an algebraic
extension.

Proof. Let K/F , and let E be the maximal algebraic extension of F in K. If α ∈ K is
algebraic over E, it is algebraic over F , so α ∈ E. So K/E is purely transcendental.

Example 6.1. Let F be a field, and let F be an algebraic closure. Then F (t)/F is purely
transcendental. We can do it the other way around, as well. F (t)/F (t) is algebraic, while
F (t)/F is purely transcendental.

Definition 6.2. A subset S ⊆ K for K/F is algebraically independent over F if for
all nonzero f ∈ F [x1, . . . , xn] and distinct s1, . . . , sn ∈ S, f(s1, . . . , sn) 6= 0.

Here are some lemmas about algebraically independent sets. The proofs are the same
as the corresponding properties of linearly independent sets.

Lemma 6.1. Let S ⊆ K be algebraically independent over F . Then t ∈ K is transcendental
over F (S), where F (S) is the smallest subfield of K generated by S over F , if and only if
S ∪ {t} is algebraically independent over F .

Lemma 6.2. S ⊆ K is algebraically independent over F if and only if every s ∈ S is
transcendental over F (S \ {s}).

Definition 6.3. A subset S of K is a transcendence basis for K/F if it is algebraically
independent over F and if K/F (S) is algebraic.

Example 6.2. Let F (t)/F . {r} is a transcendence basis, and in fact, {t1/n} is a trascen-
dence basis for any n. However {t1/2, t1/3} is not because it is not algebraically independent:
(t1/2)2 = (t1/3)3.
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The previous two lemmas imply the following lemma.

Lemma 6.3. Let S ⊆ K. The following are equivalent:

1. S is a trascnece basis for K/F .

2. S is a maximal F -algebraically independent subset of K.

3. S is a minimal subset of K such that K is algebraic over F (S).

Proof. The first two statements are equivalent by the first lemma. The latter two state-
ments are equivalent by the second.

Theorem 6.1. Every F -algebraiclly independent subset of K is contained in a transcen-
dence basis, and every S ⊆ K such that K/F (s) is algebraic contains a trascendence basis.

The proof is the same argument as the corresponding statement in linear algebra.

Corollary 6.1. Every field extension has a transcendence basis. In particular, there exists
an intermediate extension K/E/F such that K/E is algebraic and E/F is purely transen-
cental.

Proof. Take E = F (S), where S is a transcendence basis.

Theorem 6.2. Any two transcendence bases of K/F have the same cardinality.

Again, the proof is the same as the corresponding proof in linear algebra.

Definition 6.4. The transcendence degree of K/F is the number of elements in a
transcendence bases if finite. Otherwise, K/F has infinite transcendence degree.

6.2 Separability

Definition 6.5. Let f ∈ F [x]. The multiplicity of a root α of F in an algebraic closure
of F is the highest power m such that (x− α)m | f in F [x].

Example 6.3. The polynomial xp− t = (x− t1/p)p in Fp(t1/p)[x]. The multiplicity of t1/p

is p.

Lemma 6.4. The multiplicity of a root odes not depend on the choice of F and does not
depend on the choice of root if f is irreducible.

Corollary 6.2. The number of distinct roots in F of an irredudcible polynomial f ∈ F [x]
divides deg(f).

Proof. Write f =
∏k
i=1(x− αi)m. Then km = deg(f).
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Definition 6.6. We say that f ∈ F [x] is separable if every root of f has multiplicity 1.
An element α ∈ F is separable if it is algebraic over F and its minimal polynomial over
F is separable. An extension E/F is separable if every α ∈ E is separable over F .

Lemma 6.5. Let E/F be a field extension and α ∈ E be algebraic over F . Then α is
separable over F if and only if F (α)/F .

Proof. If F (α)/F is separable, then α ∈ F (α), so α is separable over F . Conversely,
suppose α is separable over F , and let β ∈ F (α). The number of embeddings of F9β

∫
F

fixing F is ≤ [F (β) : F ]. Equality holds iff β is separable over F .
The number of embeddings F (α)→ F is [F (α) : F ]. On the other hand, α is separable

over F (β), so the number of embeddings F (α) → F extending the embedding F (β) → F
equals [F (α) : F (β)]. So the number of embeddings F (α) → F over F is the product of
the number of embeddings F (β)→ F with the number of extensions of these embeddings
to F (α)→ F . So the number of embeddings F (β)→ F fixing F is

[F (α) : F ]

[F (α) : F (β)]
= [F (β) : F ].
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7 Inseparability and Perfect Fields

7.1 Towers of separable extensions

Proposition 7.1. Let E/F be finite, and let EmbF (E) be the set of embeddings Φ : E → F
fixing F. Then |EmbF (E)| divides [E : F ], with equality iff E/F is separable.

Proof. Let e = |EmbF (E)| and E = F (α1, . . . , αn). Let Ei = F (α1, . . . , αi=1, and let ei
be the number of embeddings in EmbF (Ei+1) extending an embedding in EmbF (Ei). We
know that ei | [Ei+1 : Ei] and we get equality iff Ei+1/Ei is separable. This is because
this is the number of distinct conjugates of αi over Ei times the multiplicity (number of
conjugates times multiplicity is the degree of the polynomial). Now e =

∏n
i=1 ei, so E/F

is separable.
If e = [E : F ], take β ∈ E. The number of conjugates of β ∈ F is d = |EmbF (F (β))|,

which divides [F (β) : F ]. The number of extensions of any such embedding to E → F
divides c = [E : F (β)]. Now cd = e = [E : F ], so d = [F (β) : F ], since d divides it and
c | [E : F (β)]. Then F (β)/F is separable.

Proposition 7.2. If K/E/F are salgebraic, and K/E and K/F is separable, then K/F
is separable.

Proof. In the case of finite degree, this follows from the previous proposition. In general,
any α ∈ K has minimal polynomial over E which has coefficients in a finite extension
E′/F . So E′(α)/E′/F is finite, E′(α)/E′ and E′/F are separable. So, by the finite case,
α is separable over F . This is true for all α ∈ K, so K/F is separable.

7.2 Purely inseparable extensions and degrees of separability and insep-
arability

Definition 7.1. An extension E/F is purely inseparable if every α ∈ E \F is insepara-
ble. Equivalently, E/F is separable it has no nontrivial intermediate separable extensions
over F .

Example 7.1. Fp(x)/Fp(xp) is purely inseparable because it has degree p and because the
minimal polynomial of x is tp − xp = (t− x)p.

Corollary 7.1. The set of all separable elements in an extension K/F (call it E) is a
field, and K/E is purely inseparable.

Definition 7.2. Suppose K/F is finite, and E is a maximal separable subextension. Then
the degree of separability of K/F is [K : F ]s = [E : F ]. The degree of inseparability
if [K : F ]i = [K : S].

Lemma 7.1. Let E/F is algebraic, f ∈ E[x] be monic, and m ≥ 1 such that fm ∈ F [x].
Then either m = 0 in F or f ∈ F [x].
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Proof. Let f =
∑n

i=0 aix
i be monic, and suppose that f /∈ F [x]. Let i ≤ n− 1 be maximal

such that ai /∈ F . Let c be the coefficient of x(m−1)n+i in fm. This is not in F , since c is a
sum of terms all in F (involving only aj with j > i and 1 term coming from aia

m−1
n = ai).

So c−mai ∈ F , which means ai ∈ F or m = 0 in F . But ai /∈ F .

Proposition 7.3. Let char(F ) = p. If E/F is purely inseparable and α ∈ E, then there

exists a minimal k ≥ 0 such that αp
k ∈ F , and the minimal polynomial of α is xp

k − αpk .

Proof. Let α ∈ E \ F have minimal polynomial f =
∏d
i=1(x − αi)m ∈ F [x]. Of m > 1,

then f = gm where g =
∏d
i=1(x − αi). Then m = pkt, where p - t ,and k ≥ 1 by the

lemma. Then f = (gp
k
)t ∈ F [x]. So the lemma forces t = 1 since p - t. Letting ai = αp

k

i ,

we get f =
∏d
i=1(xp

k − ai). Then f = h(xp
k
), where h =

∏d
i=1(x − ai) ∈ F [x]. This is a

separable polynomial, so F (ai)/F is separable for each i. Since E/F is purely inseparable,

each ai ∈ F . Since F is irreducible, we get d = 1. So f = xp
k − αp

k

i .

Corollary 7.2. If E/F is finite and char(F ) = p, then [E/F ]i is a power of p.

Proposition 7.4. [K : F ]s = |EmbF (K)|.

Corollary 7.3. Degrees of separability and inseparability are multiplicative in extensions.

7.3 Perfect fields

Definition 7.3. A field is perfect if every algebraic extension of it is separable.

Example 7.2. Fp is perfect. Finite extensions are Fpn , which is generated by the roots of
xp

n − x, which has pn distinct roots. So these extensions are separable.

Theorem 7.1. Every field of characteristic 0 is perfect.

Proof. Let char(F ) = 0. Then every irreducible monic polynomial is f =
∏d
i=1(x−αi)m ∈

F [x]. Then f = gm, where g ∈ F [x]. So g ∈ F [x] by the lemma. Since f is irreducible,
m = 1.

7.4 The primitive element theorem

Definition 7.4. An extension E/F is simple if E = F (α) with α ∈ E. Here, α is called
a primitive element for E/F .

Theorem 7.2 (primitive element theorem). Every finite separable extension is simple.

Proof. If F = Fq, then Fqn , where Fq(ξ), where ξ is the primitive (qn−1)-th root of 1. Now
we may assume that F is an infinite field. It suffices to show that any F (α, β)/F (with α, β
algebraic) is simple. Look at γ := α+ cβ for c ∈ F \ {0}. Since F is infinite, we can choose
c 6= (α′ − α)/(β′ − β), where α′ is a conjugate of α and same for β. Then γ 6= α′ + cβ′ for
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all such α′, β′. Let f be the minimal polynomial of α, and let h(x) = f(γ − cx) ∈ F (γ)[x].
Now h(β) = f(α) = 0. Then h does not have any other β′ as a root. We will finish this
next time.
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8 Normal Extensions, Galois Extensions, and Galois Groups

8.1 The primitive element theorem

Let’s complete the proof from last time.

Theorem 8.1 (primitive element theorem). Every finite, separable extension is simple.

Proof. If F = Fq, then Fqn , where Fq(ξ), where ξ is the primitive (qn−1)-th root of 1. Now
we may assume that F is an infinite field. It suffices to show that any F (α, β)/F (with α, β
algebraic) is simple. Look at γ := α+ cβ for c ∈ F \ {0}. Since F is infinite, we can choose
c 6= (α′ − α)/(β′ − β), where α′ is a conjugate of α and same for β. Then γ 6= α′ + cβ′ for
all such α′, β′. Let f be the minimal polynomial of α, and let h(x) = f(γ − cx) ∈ F (γ)[x].
Now h(β) = f(α) = 0, and h ∈ F (γ)[x]. But h(β′) = f(γ − cβ) 6= 0 for all β′ conjugate
(but not equal) to β. If g ∈ F [x] is the minimal polynomial of β, then since it and h share
just one root, β, in F (γ), the minimal polynomial of β is x − β. Then β ∈ F (γ), which
gives α ∈ F (γ). So F (γ) = F (α, β).

Remark 8.1. Where does separability come into play during the proof? We used that g
is separable to show that g(x) 6= (x− β)k for k > 1.

8.2 Normal extensions

Definition 8.1. An algebraic extension E/F is normal if it is the splitting field of some
set of polynomials in F [x].

Example 8.1. Q( 4
√

2)/Q is not normal. The minimal polynomial of 4
√

2, x4− 2, has roots
not in Q( 4

√
2). However, the extension Q( 4

√
2, i)/Q is normal.

Lemma 8.1. If K/F is normal, then so is K/E for any intermediate E.

Theorem 8.2. An algebraic extension E/F is normal if and only if every embedding
Φ : E → F (where F ⊆ E) fixing F satisfies Φ(E) = E.

Proof. Let E/F be normal, and say it is the splitting field of S ⊆ F [x]. Suppose Φ : E → F
is an embedding fixing F . Let α ∈ E. Then Φ(α) = β, where β is conjugate to α over F .
So β ∈ E, so Φ(E) ⊆ E. Then Φ(E) = E.

Suppose that Φ(E) = E for all Φ, and let α ∈ E have minimal polynomial f . Given
β ∈ F that is a root of f , there exists Φ such that Φ(α) = β. Therefore, β ∈ E. So in
particular, E is the splitting field of all minimal polynomials in F [x] with a root in E.

Corollary 8.1. IF E/F is normal and f ∈ F [x] has a root in E, then f splits in E.

Proposition 8.1. If E,K ⊆ F are normal over F , then so is the compositum EK.
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Proof. E is the splitting field of S. K is the splitting field of T . Then EK is the splitting
field of S ∪ T .

Here is an alternative proof.

Proof. If ϕ ∈ EmbF (EK), then since ϕ(E) = E and ϕ(K) = K, ϕ(EK) = EK.

8.3 Galois groups and extensions

Definition 8.2. The Galois group Gal(E/F ) of a normal extension E/F is the group of
field automorphisms E → E fixing F .

Sometimes, we may write Gal(E/F ) = AutF (E) ⊆ Aut(E).

Remark 8.2. |Gal(E/F )| = [E : F ]s. This equals the degree when E/F is separable.

Definition 8.3. An extensions E/F is Galois if it is normal and separable.

Remark 8.3. If E/F is finite, then E/F is Galois iff it is normal and |Gal(E/F )| = [E : F ].

Example 8.2. Last time, we showed that Fqn/Fq is separable. Fqn is the splitting field of
xq

n − x, which is separable, so Fqn is Galois. The Frobenius element ϕq ∈ Gal(Fqn/Fq)
is defined by ϕq(α) = αq. This is a field homomorphism; it is an additive homomorphism
because we are in characteristic q. What are the other elements of Gal(Fqn/Fq)?

Proposition 8.2. Gal(Fqn/Fq) = 〈ϕq〉 ∼= Z/nZ.

Proof. The automorphism ϕkq (α) = αq
k

fixes Fqn iff n | k. So its order is n. The Galois
group has order n, so this must be a cyclic group.

Example 8.3. Fp(t1/p)/Fq(t) is purely inseparable. If σ ∈ AutFq(t)(Fq(t1/p)), then σ(t) = t.

So σ(t1/p)p = σ(t) = t. Then σ(t1/p) = t1/p. That is, AutFq(t)(Fq(t1/p)) is trivial.

Example 8.4. Recall that the cyclotomic polynomial Φn is irreducible. Then [Q(ζn) :
Q] = ϕ(n). Let K be a field of characteristic - n. Define the n-th cyclotomic character
χn : Gal(K(ζn)/K) → (Z/nZ)× sending σ 7→ a (mod n), where σ(ζn) = ζan. We can also

say it like this: σ(ζn) = ζ
χn(σ)
n . This is a homomorphism because

ζχn(στ)
n = σ(τ(ζn)) = σ(ζχn(τ)

n ) = σ(ζn)χn(τ) = ζχn(σ)χn(τ)
n .

This is injective because χn is determined on σ by what power σ raises ζn to.

Proposition 8.3. The map χn : Gal(Q(ζn)/Q)→ (Z/nZ)× is an isomorphism.

Proof. The Galois group has order ϕ(n), the same as the order of (Z/nZ)×. We already
showed that χn is injective.
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8.4 Fixed fields

Definition 8.4. The fixed field of a field E by a subgroup G of Aut(E) is the field
EG = {α ∈ E : σ · α = α ∀σ ∈ G}.

Proposition 8.4. If if K/F is Galois, then KGal(K/F ) = F .

Proof. (⊇): F is fixed by every σ ∈ Gal(K/F ).
(⊆): If α ∈ KGal(K/F ), then for all σ ∈ Gal(K/F ), σ · α = α. But this means that α is

the only root of its minimal polynomial in K by normality. Separability gives us that the
minimal polynomial is x− α. Therefore, α ∈ F .

Let K/F is finite and Galois, let E be intermediate, and let σ ∈ Gal(K/F ). We can
consider the restriction σ|E : E → σ(E). If E is normal over F , then this gives a map
Gal(K/F )→ Gal(E/F ).

Lemma 8.2. Let K/F be Galois and E be intermediate. The restriction map resE :
Gal(K/F )/Gal(K/E) → EmbF (E) is a bijection. If E/F is Galois, then this is an iso-
morphism of groups.

Proof is left as an exercise.1

1Why, Professor Sharifi? Why?
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9 The Fundamental Theorem of Galois Theory

9.1 Restriction of automorphisms and the Galois group over a fixed field

Here, assume all extensions K/F will lie in F .

Proposition 9.1. If K/F is Galois and E is intermediate, then there exits a bijection of
left Gal(K/F )-sets resF : Gal(K/F )/Gal(K/E)→ EmbF (E) sending σGal(K/E) 7→ σ|E.
Moreover, E/F is Galois if and only if Gal(K/E) is normal in Gal(K/F ), in which case
resF is an isomorphism of groups.

Proof. If σ ∈ Gal(K/F ) and τ ∈ Gal(K/F ), then

στ |E = σ|E ⇐⇒ στ (α) = σ(α) ∀α ∈ E
⇐⇒ τ(α) = α ∀α ∈ E
⇐⇒ τ ∈ Gal(K/E).

To show that this is onto, every ϕ ∈ EmbF (E) lifts to σ : K → F , but this takes values
in K since K/F is normal. So σ ∈ Gal(K/F ). If |rho ∈ Gal(K/F ), then

resF (ρσGal(K/E)) = ρσ|E = ρ ◦ σ|E = ρ ◦ resF (σGal(K/E)).

If E/F is Galois, then Gal(K/F )→ Gal(E/F ) sending σ 7→ σ|E has kernel Gal(K/E), so
it is normal.

Conversely, if Gal(K/E) E Gal(K/F ), take ϕ ∈ EmbF (E), and σ ∈ Gal(K/F ) lifting
ϕ. Then for all τ ∈ Gal(K/E), σ−1τσ|E = 1. By normality, τσ|E = σ|E . So σ(E) is fixed
by τ . So σ(E) ⊆ E, the fixed field of τ . So σ(E) = E, so E/F is Galois.

Proposition 9.2. Let K/F be finite and Galois, and let H ≤ Gal(K/F ). Then the Galois
group Gal(K/KH) = H.

Proof. H fixes KH , so H ≤ Gal(K/KH). K/KH is separable, so by the primitive element
theorem, there exists θ ∈ K such that K = KH(θ). Then f =

∏
σ∈H(x − σ(θ)) ∈ KH [x].

The minimal polynomial of θ over KH divides f , so [K : KH ] ≤ deg(f) = |H|. This forces
H = Gal(K/KH).

9.2 The Galois correspondence

Theorem 9.1 (Fundamental theorem of Galois theory). Let K/F be finite, Galois. There
are inclusion-reversing inverse bijections ψ : {E : K/E/F} → {H : H ≤ Gal(K/F )} and
θ : {H : H ≤ Gal(K/F )} → {E : K/E/F} such that ψ(E) = Gal(K/E), and θ(H) = KH .
For such E/H, [K : E] = |Gal(K/E)|, and |H| = [K : KH ]. These restrict to bijections
between normal extensions of K and normal subgroups of Gal(K/F ). If E/F is normal,
we have the bijection Gal(K/F )/Gal(K/E)→ EmbF (E), sending σGal(K/E) 7→ σ|E.
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Proof. We have proved almost all the statements. We verify

ψ(θ(H)) = ψ(KH) = Gal(K/KH) = H,

θ(ψ(E)) = θ(Gal(K/E)) = KGal(K/E) = E.

Example 9.1. The splitting field of x4−2 over Q is K = Q( 4
√

2, i). The polynomial x4−2
is irreducible over Q(i). There exists τ ∈ Gal(K/Q(i)) ∼= Z/4Z with τ( 4

√
2) = i 4

√
2; this

generates Gal(K/Q(i)). The Gal(K/Q( 4
√

2)) 3 σ such that σ(i) = −i and σ( 4
√

2) = 4
√

2.
We can check that στσ−1( 4

√
2) = −i 4

√
2 = τ−1( 4

√
2). So στσ−1 = τ−1. Then Gal(K/Q) ∼=

Z/4Z o Z/2Z ∼= D4.
Here is a diagram of some of the intermediate fields.

Q(i, 4
√

2)

Q(i) Q( 4
√

2) Q(i 4
√

2)

Q(
√

2)

Q

2
4 2

2

2
2

2

Proposition 9.3. Let Kbe finite and Galois over F , and let E/F be algebraic. Then the
map resK : Gal(EK/E)→ Gal(K/K ∩ E) sending σ 7→ σ|K is an isomorphism.

Proof. Let σ ∈ Gal(EK/E). Then σ fixes E, so σ|K fixes K ∩E. If σ|K = 1, then σ dixes
E and K, so σ fixes EK. So σ = 1. Then resK is injective.

Let H be the image. Then KH = KGal(EK/E) = K ∩ E. So H = Gal(K/KH) =
Gal(K/K ∩ E). So resK is onto.

Proposition 9.4. Let K/F be finite, Galois of degree n. Then Gal(K/F ) embeds into Sn.

Proof. By the primitive element theorem, K = G(θ), so Gal(K/F ) permutes the roots of
the conjugates of θ, a set with n elements. This action is faithful and transitive.
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10 Profinite Groups and Infinite Galois Theory

10.1 Galois groups of infinite field extensions

Example 10.1. Consider Gal(Fp/Fp). It maps to each Gal(Fpn/Fp), so Gal(Fp/Fp) →
lim←−Gal(Fpn/Fp). This is injective because an element of Gal(Fp/Fp) is determined by
what it does to Fpn for all n. It is surjective because we can keep lifting elements in
Gal(Fpn .Fp).

This example had nothing to do with Fp. In fact, for any Galois extension K/F ,

Gal(K/F ) ∼= lim←−
E⊆K

E/F finite, Galois

Gal(E/F ).

Then
lim←−
n

∼= lim←−
n

Z/nZ = Ẑ,

the Prüfer ring. Z < Ẑ says that 〈ϕp〉 < Gal(Fp,Fp). Then F〈ϕp〉p = Fp. So Gal(K,KH)
can be bigger than H.

Suppose we have an inverse system (Gi, φi,j) of groups, where I is a directed set. That
is, given i, j ∈ I, there exists some k such that k ≤ i or k ≤ j, and φi,j : Gi → Gj . Recall
that the inverse limit lim←−iGi ⊆

∏
i∈I Gi is lim←−iGi = {(gi)i∈I : φi,j(gi) = gj ∀i, j}. Then the

Galois group will be G = lim←−i∈I Gi. If

EE′

E E′

F

then Gal(EE′/F ) surjects onto both Gal(E/F ) and Gal(E′/F ).

10.2 Topological and profinite groups

Definition 10.1. A topological group G is a group with a topology such that the
multiplication map G × G → G and inversion map G → G sending (x, y) 7→ xy and
x 7→ x−1 are continuous.

Then
∏
i∈I has the product topology, which is generated by the base∏

j∈J
Uj ×

∏
i∈I\J

Xi,
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where Uj ⊆ Xj is open.
Then G = lim←−iGi has the subspace topology induced from the product topology. G is

a topological group with respect to this topology (exercise).

Definition 10.2. A profinite group is an inverse limit of finite groups G = lim←−Gi
endowed with the above topology, the profinite topology relative to (Gi, φi,j)

Example 10.2. Let Ẑ = lim←−Z/nZ. Then πn : Ẑ → Z/nZ is continuous, and nẐ =

ker(πn) = π−1
n ({0}) is open. Then nẐ is a base of open neighborhoods of 0. Then {a+nẐ}

is a basis of open neighborhoods of a ∈ Z. Since Z surjects onto Z/nẐ, we can find an ∈ Z
such that an 7→ a+ nẐ for all n. So Z is dense in Ẑ; that is, its closure is Ẑ.

Theorem 10.1. A topological group G is profinite if and only if it is compact, Hausdorff,
and totally disconnected (every connected component is a point).

Let’s assume the following fact from topology.

Proposition 10.1. A compact, Hausdorff space is totally disconnected if and only if it has
a base of clopen neighborhoods.

We will prove one direction of the theorem.

Proof. Assume G is profinite. Products of compact, Hausdorff spaces are compact, Haus-
dorff. Closed subsets of Hausdorff spaces are compact, and subsets of Hausdorff spaces are
Hausdorff. To show that G is closed, note that

G =
⋂
φi,j

{(gi)i∈I : φi,j(gi) = gj}.

Now let Uj be open for all j ∈ J with J finite. Then∏
j∈J

Uj ×
∏
i∈I\J

Gi

c

=

⋂
j∈J

Uj ×∏
i 6=j

Gi

c

=
⋃
j∈J

Uj ×∏
i 6=j

Gi

c

=
⋃
j∈J

U cj ×
∏
i 6=j

Gi.

So
∏
iGi is totally disconnected. So G = lim←−Gi is totally disconnected.

Let πI : G → Gi. Then ker(πi) = (
∏
j 6=iGj) × {1}. Then

∏
i∈I\J Gi ×

∏
j∈J{1} is a

basis of neighborhoods of 1. Then
⋂

lim←−iGi =
⋂
j∈J ker(πj) is an open subgroup of lim←−Gi

with finite index.
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Proposition 10.2. In profinite groups, subgroups are open if and only if they are closed
and have finite index.

Proof. (⇐= ): If H ≤ G is closed of finite index, then {gH : gH 6= H} ⊆ G/H is a finite
set. Each gH is closed, so

⋃
gH 6=H gH = Hc. So H is open.

Definition 10.3. The Krull topology on Gal(K/F ) is the profinite topology for

Gal(K/F ) = lim
E⊆K

E/F finite

Gal(E/F ).

Definition 10.4. If G is a group, the profinite completion is

Ĝ = lim←−
NEG

finite index

N.

This gives a functor from the category of groups to the category of topological groups.

10.3 The fundamental theorem of Galois theory for infinite degree ex-
tensions

Theorem 10.2 (fundamental theorem of Galois theory). Let K/F be Galois. There are in-
verse, inclusion reversing correspondences {E : K/E/F} → {H : H ≤ Gal(K/F ), H closed}
sending E 7→ Gal(K/E) and H 7→ KH . Respective correspondences exist for finite or nor-
mal extensions to open or normal subgroups. If E/F is normal, then Gal(K/F )/Gal(K/E) ∼=
Gal(E/F ), where this is a topological isomorphism.

Example 10.3. The absolute Galois group of Q is GQ = Gal(Q/Q).

Example 10.4. The absolute Galois group of R is GR ∼= Z/2Z.

Example 10.5. The absolute Galois group of Fp is Ẑ ∼=
∏
p prime Zp ,where Zp = lim←−n Z/p

nZ.

Theorem 10.3 (Kronecker-Weber). Let µn be a primitive n-th root of unity, and let
Qab =

⋃
nQ(µn). Then GQab = Gal(Qab/Q) ∼= Ẑ×
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11 Tensor Products

11.1 Construction, universal property, and examples

Let A be a ring, let M be a right A-module, and let N be a left A-module.

Definition 11.1. The tensor product of M and N over A, denoted M ⊗A N , is the
quotient of ZM×N =

⊕
(m,n)∈M×N Z(m,n) by the Z-submodule generated by

1. (m+m′, n)− (m,n)− (m′, n)

2. (m,n′ + n)− (m,n)− (m,n′)

3. (ma, n)− (m, an)

for all m,m′ ∈M , n, n′ ∈ N , and a ∈ A. The image of (m,n) in M ⊗AN is denoted m⊗n
and is called a simple tensor.

Example 11.1. How do simple tensors work? Let k ∈ Z.

k(m⊗ n) = (m⊗ n) + · · ·+ (m⊗ n) = (m+ · · ·+m)⊗ = (km)⊗ n = m⊗ (kn).

Similarly,
(−1)(m⊗ n) = (−m)⊗ n.

0⊗ n = 0 = m⊗ 0.

Proposition 11.1 (tensor product universal property). Let L be an abelian group and
φ : M ×N → L be such that

1. φ(m+m′, n) = φ(m,n) + φ(m′, n) (left biadditivity)

2. φ(m,n+ n′) = φ(m,n) + φ(m,n′) (right biadditivity)

3. φ(ma, n) = φ(m, an) (A-balanced).

There exists a unique homomorphism Φ : M ⊗A N → L such that Φ(m⊗ n) = φ(m,n) for
all m ∈M and n ∈ N .

M ×N L

M ⊗A N

φ

Φ
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Proof. M ⊗A N = ZM×N/I for the ideal generated by the relations. ZM×N is free over Z,
so there exists a unique ϕ : ZM⊗N → L given by ϕ((m,n)) = φ(m,n). We get

ZM×N L

M ⊗A N
Φ

whrer the map ZM⊗N → M ⊗A N is surjective. This uniquely determined Φ if it exists;
i.e. Φ(I) = 0. We can verify, for example, that

ϕ((m+m′, n)− (m,n)− (m,n)) = φ(m+m; , n)− φ(m,n)− φ(m′, n) = 0.

Here is a special case. Let A be an R-algebra, where R is commutative. Let ψ : R →
Z(A), the center of A. M is an R-A bimodule, where rm = mr. Recall that an A-B
bimodule is a left A-module and a right B module such that (am)b = a(mb) fir all a ∈ A,
m ∈M and b ∈ B. We can define

r(m⊗ n) = (rm)⊗ n = (mr)⊗ n = m⊗ (rn)

to give M ⊗A N an R-module structure. Another way to do this would be to deinfe
M ⊗A N as RM×N , quotiented by the R-submodule generated by the same relations, plus
the relation r(m,n)− (rm, n).

What is the universal property saying?

HomR−mod(M ⊗R N,L) ∼= Hom(M ×N,L),

where the right side is homomorphisms that are R-bilinear and A-balanced.

Example 11.2. Let K be a field. Then Km⊗KKn is an mn-dimensional K vector space,
generated by ei ⊗ ej , where {ei} and {ej} form a basis for Km and Kn, respectively:

Km ⊗Kn =

(
m⊕
i=1

K

)
⊗Kn ∼=

m⊗
i=1

(K ⊗Kn) ∼=
m⊕
i=1

Kn ∼= Kmn.

Example 11.3. Z/mZ ⊗Z Z/nZ ∼= Z/(m,n)Z. We have the biadditive, Z-balanced map
Z/mZ⊗Z Z/nZ→ Z/(m,n)Z sending (a, b) 7→ ab, so there exists a unique map Z/mZ⊗Z
Z/nZ→ Z/(m,n)Z sending a⊗ b 7→ ab. This is surjective. Let a, b ∈ Z. Then m(a⊗ b) =
ma ⊗ b = 0, and n(a ⊗ b) = a ⊗ nb = 0. Also, a ⊗ b = ab(1 ⊗ 1), which means that this
group is cyclic by has order dividing m and dividing n. So the map is injective.

Example 11.4. A⊗A N ∼= N as let A-modules.

More generally, let A,B,C be rings, let A be an A-B bimodule, and let N be a B-C
bimodule. Then M ⊗B N is an A-C bimodule.

a(m⊗ n) = (am)⊗ n, m⊗ (nc).
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11.2 Properties of the tensor product

Proposition 11.2. M⊗A ∼= N ⊗Aop M .

Proof. We have the map (m,n) 7→ m ⊗ n which is bilinear and A-balanced. It induces a
unique map M ⊗A N → N ⊗Aop M .

Proposition 11.3. Let L be a right A-module, let M be an A-B bimodule, and let N be
a left B-module. Then (L⊗AM)⊗BN ∼= L⊗A (M ⊗B N).

Proof. We can verify this using the universal property, as before. Alternatively, we can
define the object L ⊗A M ⊗B N as we defined the tensor product and show that (L ⊗A
M)⊗BN and L⊗A (M ⊗B N) are isomorphic to it.

Proposition 11.4. (
⊕

i∈IMi)⊗A N ∼=
⊕

i∈I(Mi ⊗AN).

Proposition 11.5. Let M be a left A-module, and let I ⊆ A be a 2-sided ideal. Then
A/IA⊗AM ∼= M/IM as A-modules.

Proof. Define a map φ : A/IA ×M → M/IM such that φ(a,m) = am + IM . This is
well-defined because if b ∈ I, then φ(b,m) = bm + IM = 0. This satisfies the properties
we need, so there exists a homomorphism Φ : A/I ⊗A M → M/IM of A-modules. This
homomorphism is surjective. We can define an inverse M/IM → A/IA ⊗A M sending
m+ IM 7→ 1⊗m; this is well-defined because for bi ∈ I and mi ∈M ,∑

bimi 7→ 1⊗
∑

bimi =
∑

(1⊗ bimi) =
∑

(bi ⊗mi)︸ ︷︷ ︸
=0

= 0.

Check that this is the inverse of Φ.

We can also take tensor products of R-algebras A and B to get and R-algebra A⊗RB,
where (a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′.
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12 Tensor Products of Algebras and Homomorphism Groups

12.1 Tensor products of algebras

Let A,B,C be R-algebras, where R is a commutative ring. Let M and N be R-balanced
A-B and B-C bimodules, respectively.

Definition 12.1. An R-balanced bimodule M is a module such that rm = rm for all
r ∈ R,m ∈M .

This is equivalent to M being a A ⊗R Bop-module. Then M ⊗B N becomes an R-
balanced A-C bimodule:

a(m⊗ n) = am⊗ n, (m⊗ n)c = m⊗ nc.

We can also take tensor products of R-algebras, to get an R-algebra A⊗R B. We can
define this by

(a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′.

Proposition 12.1. Multiplication is well-defined.

Proof. We want to construct A× B → EndR(A⊗R B) sending (a, b) 7→ ϕa,b = (a′ ⊗ b′ 7→
aa′ ⊗ bb′). To show that ϕa,b is well defined, we want a map A × B → A ⊗R B sending
(a′, b′) 7→ aa′ ⊗ bb′. By the universal property of the tensor product, we get a unique map
A⊗R B → A⊗R B, which we can set to be ϕa,b.

Now we want to show that our original map is bilinear. Check that

(ra1 + a2, b) 7→ ϕra1+a2,b = rϕa1,b + rϕa2 .

By the universal property, we get a map A⊗RB → EndR(A⊗RB) sending a⊗b 7→ (a′⊗b′ 7→
aa′⊗bb′). So then we get a map A⊗R×A⊗RB → A⊗RB sending (a⊗b, a;⊗b′) 7→ aa′⊗bb′.
So the operation is well-defined.

Example 12.1. Let R be a commutative ring. Then R[x]⊗R R[y] ∼= R[x, y] by specifying
(xi, yj) 7→ xiyj and extending this map to be bilinear. This map is surjective because we
get every monomial in R[x, y]. Since R[x, y] is free on the monomials xiyj , we can define
an inverse map defined by xiyj 7→ xi ⊗ yj .

Example 12.2. Let G be a group. The R-group ring of G, R[G], is the set of sums∑
g∈G ag[g], where ag ∈ R and ag = 0 for all but finitely many g. We can define multipli-

cation on this by extending the multiplication on monomials defined by [g] · [h] = [gh].
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12.2 Homomorphism groups

Example 12.3. Let M,N be R-modules. Then HomR(M,N) is an R-module: Let φ, ψ ∈
HomR(M,N). Then we can define (rϕ)(m) := ϕ(rm) = rϕ(m) and (ϕ+ ψ)(m) = ϕ(m) +
ϕ(m). These are still R-module homomorphisms:

(rϕ)(m)(sm) = ϕ(rsm) = ϕ(srm) = sϕ(rm) = s(rϕ)(m)

for r, s ∈ R.

Remark 12.1. If M,N are A-modules, then HomA(M,N) is an R-module but not an
A-module.

Example 12.4. Let M be an R-balanced A-B bimodule, and let N be an R-balanced A-C
bimodule. Then HomA(M,N) is a B-C bimodule by defining

(bϕ)(m) := ϕ(mb), (ϕc)(m) = ϕ(m)c.

Check that everything is balanced.

HomA(·, ·) : A⊗R Bop-mod→ B ×A⊗R Bop-mod→ B ⊗R Cop-mod is a bifunctor.

HomA(M
∏
i∈I

Ni) ∼=
∏
i∈I

HomA(M,Ni).

HomA(
⊕
i∈I

Mi, N) ∼=
∏
i∈I

HomA(Mi, N).

Definition 12.2. If F is a field, and V is an F vector space, we can define the dual
vector space, V ∗ = HomF (V, F ).

12.3 Dual vector spaces

If we have a map f : V →W , we get a map f∗ : W ∗ → V ∗ defined by f∗(ϕ)(v) = ϕ ◦ f(v),
so V 7→ V ∗ is a contravariant functor from F -vector spaces to F -vector spaces.

If V has basis v1, . . . , vn, then there is a dual basis ϕ1, . . . , ϕn of V ∗ given by

ϕi(vj) = δi,j =

{
1 i = j

0 i 6= j.

So V ∼= V ∗ if V is finite dimensional. This is not the case if V is infinite-dimensional.
The functor V 7→ V ∗∗ covariant. We get Φ : V → V ∗∗ given by Φ(v)(f) = f(v). Check

that Φ is F -linear.

Proposition 12.2. Φ : V → V ∗∗ is injective.
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Proof. If Φ(v) = 0, then f(v) = 0 for all f ∈ V ∗; if v 6= 0, extend v to a basis B. Then
there exists fv ∈ V ∗ such that fv(v) = 1 and fv(w) = 0 for all w ∈ B with w 6= v. This is
a contradiction.

However, Φ is not always an isomorphism. If V =
⊕

i∈I , then V = Hom(
⊕

i∈I F, F ) =∏
i∈I Hom(F, F ) =

∏
i∈I F , which is bigger than V . So V ∗∗ will be even bigger.

Proposition 12.3. If W is finite dimensional over F , then HomF (V,W ) ∼= V ∗ ⊗F W via
f ⊗ w 7→ (v 7→ f(v)w).

Proof. W =
⊗n

i=1 Fwi. Then

V ∗ ⊗F
n⊕
i=1

F ∼=
n⊕
i=1

V ∗ ⊗F F ∼=
n⊕
i=1

V ∗ ∼=
n⊕
i=1

Hom(V, F ) ∼= Hom(V,
n⊕
i=1

F ).

This isomorphism is precisely the map you get from composing these isomorphisms.

12.4 Adjointness of Hom and ⊗

Theorem 12.1. Let A,B,C be R-algebras, and let M,N,L be R-balanced A-B, B-C, and
A-C bimodules, respectively. Then HomA(M ⊗B N,L) ∼= HomB(N,HomA(M,L)) as right
C-modules. Moreover, these are natural in M,N,L. In fact, we have tM : B⊗RCop -mod→
A⊗R Cop -mod

N M ⊗R N

N ′ M ⊗R N ′
λ idM ⊗Rλ

and hM : A⊗RCop -mod→ B⊗RCop -mod such that HomA(tM(N), L) ∼= HomB(N,hM (L))
is natural in N and L; i.e. tM is left adjoint to hM .

We will prove this next time.
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13 Hom-⊗ Adjunction, Tensor Powers, and Graded Algebras

13.1 Adjunction of Hom and ⊗

Theorem 13.1. Let A,B,C be R-algebras, and let M,N,L be R-balanced A-B, B-C, and
A-C bimodules, respectively. Then HomA(M ⊗B N,L) ∼= HomB(N,HomA(M,L)) as right
C-modules. Moreover, these are natural in M,N,L. In fact, we have tM : B⊗RCop -mod→
A⊗R Cop -mod

N M ⊗R N

N ′ M ⊗R N ′
λ idM ⊗Rλ

and hM : A⊗RCop -mod→ B⊗RCop -mod such that HomA(tM(N), L) ∼= HomB(N,hM (L))
is natural in N and L; i.e. tM is left adjoint to hM .

Remark 13.1. This is the most general version, but you can safely forget C to get a more
readable version of this theorem.

Proof. Let
ϕ 7→ (n 7→ (m 7→ ϕ(m⊗ n))︸ ︷︷ ︸

ψn

).

This is a homomorphism of abelian groups. Define ψn : M → L be ψn(m) = m⊗ n. Then

ψn(am) = ψn((am)⊗ n) = aψ(m⊗ n) = aψn(m),

so ψn ∈ HomA(M,L). Now look at n 7→ ψn. Then

(bψn)(m) = ψn(mb) = mb⊗ n = m⊗ bn = ψbn(m),

so (n 7→ ψn) ∈ HomB(N,HomA(M,L)). Showing that our map is a map of Cop-mods is
left as an exercise.

Let’s find an inverse. Take θ ∈ HomB(N,Hom(M,L)), and send

θ 7→ (m⊗ n 7→ θ(n)(m)).

Then
a(m⊗ n = am⊗ n 7→ θ(n)(am) = aθ(n)(m),

so this is a map of A-modules. Also, (m,n) 7→ θ(n)(m) gives a map M × N → L that is
left A-linear, B-balanced, and right C-linear (check this). So M ⊗B N → L is a map of
A⊗RCop-mods. To show that these are inverse maps, let ϕ 7→ θ, where θ(n)(m) = ϕ(m⊗n).
Then

θ 7→ (m⊗ n 7→ θ(n)(m) = ϕ(m⊗ n))︸ ︷︷ ︸
ϕ

.

Check that the other composition works out.
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13.2 Tensor powers and graded algebras

Let M be an R-module, where R is a commutative ring.

Definition 13.1. The k-th tensor power of M over R is M⊗k = M ⊗RM ⊗R · · · ⊗RM .

This satisfies the universal property for multilinear maps:

M ×M × · · · ×M L

M ⊗RM ⊗R · · · ⊗RM

Definition 13.2. A graded ring A =
⊕∞

i=0Ai is ring consisting of a sequence of abelian
groups Ai such that

1. The restriction of + : A×A→ A to Ai ×Ai is the operation on Ai

2. The restriction of · : A×A→ A to Ai ×Aj lands in Ai+j (so A0 is a ring).

Here, grk(A) := Ak is called the k-th graded piece.

To check that the direct sum of abelian groups together with these maps forms a graded
ring, we need these to be the same:

(Ai ×Aj)×Ak → Ai+j ×Ak → Ai+k+k,

Ai × (Aj ×Ak)→ Ai ×Aj+k → Ai+j+k.

Definition 13.3. A graded R-algebra is a graded ring with the Ai R-algebras, with a
map R → Z(A0) such that R × Ai → Ai and Ai × R → Ai are the same, and such that
Ai ×Aj → Ai+j is R-bilinear.

Define

T (M) =

∞⊕
k=0

M⊗k,

where we have the map M⊗k ×M⊗` →M⊗(k+`) given by

(m1 ⊗ · · · ⊗mk) · (m′1 ⊗ · · · ⊗m′`) = m1 ⊗ · · ·mk ⊗m′1 ⊗ · · · ⊗m′`.

Then this is a graded R-algebra.

Example 13.1. Let R be a commutative ring. Then

T (R) =

∞⊕
k=0

R ∼= R[x],

where the k-th graded piece has basis element 1 7→ xk.
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Example 13.2. Let R be a commutative ring. What is T (R⊕n) = T (Rx1 ⊕ · · · ⊕ Rxn)?
The k-th graded piece is generated by xi1 ⊗ · · · ⊗ xik . However, this is not R[x1, . . . , xn].

Notice that xi ⊗ xj 6= xj ⊗ xi, so R⊕n ⊗R R⊕n = R⊕n
2
. So

T (R⊕n) = R 〈x1, . . . , xn〉 ,

the noncommutative polynomial ring in n variables over R.

What is the universal property of T? If ϕ : M → A is a map of A modules, where A is
an R-algebra, then there exists a unique T (ϕ) : T (M)→ A such that

M L

T (M)

ϕ

T (ϕ)

because T (ϕ)(m1 ⊗ · · · ⊗mk) = ϕ(m1)⊗ · · · ⊗ ϕ(mj) determines T (ϕ).
Let I = {m⊗ n− n⊗m : m,n ∈M}. Then

I =

∞⊕
k=0

grk(I),

where grk(I) := I ∩ grk(T (M)). Then I is a graded ideal. If A is a graded R-algebra and
I is a graded ideal of A, then

A/I ∼=
∞⊕
k=0

grk(A)/ grk(I)

is a graded ring.

Definition 13.4. The symmetric algebra is S(M) = T (M)/I.

In the quotient,

m1 ⊗m2 ⊗m3 = m3 ⊗m1 ⊗m2 = m1 ⊗m3 ⊗m2 = · · · .

Example 13.3. S(R⊕n) = R[x1, . . . , xn].
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14 Symmetric Powers, Exterior Powers, and Determinants

14.1 Symmetric algebras and powers

Let A be a graded R-algebra.

Definition 14.1. A homogeneous ideal I of A is an ideal such that I =
⊕∞

k=0 grk(I),
where grk(I) = I ∩ grk(A).

Lemma 14.1. An ideal is homogeneous if and only if it has a set of generators, each of
which lies in some grk(A).

Example 14.1. Let I = (x3 − y2) ⊆ A = R[x, y], which is graded by degree. This is not
homogeneous, so A/I is not graded.

Let M be an R-module.

Definition 14.2. The tensor module is T (m) =
⊕∞

k=0M
⊗k.

Definition 14.3. The symmetric algebra is S(M) = T (M)/I, where I is the ideal
generated by m ⊗ n − n ⊗m for all m,n ∈ M . We call the graded pieces Symmk(M) =
grk(S(M)).

Example 14.2. S(R⊕n) = R[x1, . . . , xn], and Symmk(R⊕n) is the set of homogenerous
polynomials of degree k in x1, . . . , xn.

Symmk(M) satisfies a universal property.

Proposition 14.1. For any ψ : Mk → L which is R-multilinear and symmetric in its
variables, there is a unique Ψ such that

M × · · · ×M L

Symmk(M)

ψ

Ψ

If f : M → N is a morphism of R-modules, then Symmk(f) : Symmk(M)→ Symmk(N)
sends m1 ⊗ · · · ⊗mk 7→ ψ(m1)⊗ · · · ⊗ ψ(mk).

14.2 Exterior algebras and powers

To get antisymmetric instead of symmetric we could try the ideal generated by the m ⊗
n+ n⊗m. If n = m, we get that 2m⊗m is in the ideal, but m⊗m is not necessarily in
the ideal. But we want ψ(m,m,m, . . . ) = 0. Instead take,

J = ({m⊗m : m ∈M}).
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Then
J 3 (m+ n)⊗ (m+ n)−m⊗m− n⊗ n = m⊗ n+ n⊗m,

so we get all the relations we want.

Definition 14.4. The exterior algebra on an R-module M is
∧

(M) = T (M)/J =⊕∞
k=0

∧k(M).
∧k(M) is called the k-th extenior product of M .

The k-th exterior product of M is universal for R-bilinear, alternating mpas in k-
variables: ψ(. . . ,m,m, . . . ) = 0 for all m. We write the elements as

m ∧ · · · ∧mk ∈
k∧

(M).

Here are some properties:

1. m1 ∧m2 ∧m3 = −m1 ∧m3 ∧m2 = m3 ∧m1 ∧m2 = · · ·

2. · · · ∧m ∧m ∧ · · · = 0

A generalization of the first property is the following,

Lemma 14.2. mσ(1) ∧ · · · ∧mσ(k) = (sign(σ))m1 ∧ · · · ∧mk.∧k(R⊕n) is spanned by ei1 ∧ · · · ∧ eik , where 21, . . . , en is the standard basis of R⊕n,
and i1, . . . , ik ∈ {1, . . . , n}. In fact, this is spanned by ei1 ∧ · · · ∧ eik , where i1, . . . , ik are
distinct, or equivalently, i1 < · · · < ik.

Theorem 14.1.
∧k(R⊕n) is free on the generators ei1∧· · ·∧eik with 1 ≤ i1 < · · · < ik ≤ n.

In particular,

dim

(
k∧

(R⊕n)

)
=

{(
n
k

)
k ≤ n

0 k > n.

Proof. Let M = R⊕n. Fix i1 < · · · ik. It suffices to show the there exists some Φ :
∧kM →

R such that
Ψ(ei1 ∧ · · · ∧ eik) = 1, Ψ(ej1 ∧ · · · ∧ ejk) = 0

if j1 < · · · < jk and (i1, . . . , ik) 6= (j1, . . . , jk). We want a map ψ : M ×· · ·×M → R. Send

ψ(ej1 , . . . , ejk) =


sign(σ) iσ(t) = jt ∀t
0 {i1, . . . , ik} 6= {j1, . . . , jk}
0 j1, . . . , jk not distinct

If it is alternating on a basis, it is alternating (exercise), so this is well-defined. Then we
get a dual basis of the correct size.
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14.3 Determinants

Say M is free with basis e1, . . . , en, and T : M → M is R-linear. This induces
∧n(T ) :∧n(M)→

∧n(M); this is a mapR→ R, and it sends e1∧· · ·∧en 7→ 1. This is multiplication
by some element of R, which we call det(T ). It satisfies Te1∧· · ·∧Ten = det(T )e1∧· · ·∧en.

Definition 14.5. det(T ) is called the determinant of T .

Lemma 14.3. Tv1 ∧ · · · ∧ Tvn = det(T )v1 ∧ · · · ∧ vn.

Proof. Expand each vi as a linear combination of the e1 ∧ · · · ∧ en. Then the statement
applies to each Te1 ∧ · · · ∧ Ten, and we can do the steps in reverse.

Proposition 14.2. Let T,U : M →M . Then det(T ◦ U) = det(T ) det(U).

Proof.

det(TU)e1 ∧ · · · ∧ en = TUe1 ∧ · · · ∧ TUen
= det(T )Ue1 ∧ · · · ∧ Uen
= det(T ) det(U)e1 ∧ · · · ∧ en.

Corollary 14.1. If T : M →M is an isomorphism, det(T ) ∈ R×.

Proof. det(T ) det(T )−1 = 1 by the proposition.
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15 Properties of Determinants and Change of Basis

15.1 Formulas for determinants and effect of elementary matrices

We have an isomorphism Mn(R) ∼= EndR(R⊕n) sending a matrix A to the associated linear
transformation T . We say det(A) := det(T ).

Theorem 15.1. det(A) =
∑

σ∈Sn(sign(σ))a1,σ(1) · · · an,σ(n).

Proof. Let vj ∈ R⊕n be the j-th column vector of A. Then T (ej) = vj for all j. Then

v1 ∧ · · · ∧ vn = (detA)e1 ∧ · · · ∧ en.

On the other hand,

v1 ∧ · · · ∧ vn =
n∑

i1=1

· · ·
n∑

in=1

ai1,1ai2,2 · · · ain,nei1 ∧ ei2 ∧ · · · ∧ en

In this sum the term will be zero unless all of the ij are distinct. These also correspond to
σ ∈ Sn such that σ(j) = ij .

=
∑
σ∈Sn

aσ(1),1 · · · aσ(n),neσ(1) ∧ · · · ∧ eσ(n)

=
∑
σ∈Sn

aσ(1),1 · · · aσ(n),n sign(σ)︸ ︷︷ ︸
=sign(σ−1)

e1 ∧ · · · ∧ en

=
∑
σ∈Sn

sign(σ)a1,σ(1) · · · an,σ(n)e1 ∧ · · · ∧ en.

∧n(R⊕n) ∼= R with basis e1 ∧ · · · ∧ en, so we get the desired equality.

Proposition 15.1. The determinant has the following properties:

1. det(T ) = det(A>).

2. If we switch 2 rows or columns of A to get B, then det(B) = −det(A).

3. If we add an R-multiple of a row or column of A to another to get A, then det(C) =
det(A).

4. If we scale a row or column of A by α ∈ R, to get D, then det(A) = α det(A).

Proof. These follow from the formula for the determinant.

1. We showed this in the proof of the formula.
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2. Reindex the sum by composing with a transposition.

3. If we have a repeated vj , then the term is zero. So

v1 ∧ · · · ∧ (vi + cvj) ∧ · · · ∧ vn = v1 ∧ · · · ∧ vn +
��

���
���

���
��:0

c(v1 ∧ · · · ∧ vj ∧ · · · ∧ vn).

4. The proof is the same as the previous part.

15.2 Cofactor expansion

Definition 15.1. The (i, j) minor of a matrix A is the matrix Ai,j with the i-th row and
j-th column removed.

The (i, j) minor lies in Mn−1(R).

Proposition 15.2. For all k ≤ j ≤ n,

det(A) =
n∑
i=1

(−1)i+jai,j det(Ai,j).

Proof. First, write

v1 ∧ · · · ∧ vn = (−1)j−1vj ∧ (v1 ∧ · · · ∧ vj−1 ∧ vj+1 ∧ · · · ∧ vn).

Write vj =
∑n

i=1 ai,jei, and write w
(i)
k := vk − ai,kei for all i, k.

= (−1)j−1
n∑
i=1

ai,jei ∧ (w
(i)
1 ∧ · · · ∧ w

(i)
j−1 ∧ w

(i)
j+1 ∧ · · · ∧ w

(i)
n )

= (−1)j−1
n∑
i=1

ai,j det(Ai,j)ei ∧ e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ en

=
n∑
i=1

(−1)i+jai,j det(Ai,j)e1 ∧ · · · ∧ en.

Remark 15.1. In this formula, we could have indexed over j, instead.

15.3 Adjoint matrices

Definition 15.2. The adjoint matrix toA is the matrix with (i, j)-entry (−1)i+j det(Aj,i).

Proposition 15.3. A · ad(A) = det(A) · In.
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Proof. The (i, j) entry is

n∑
k=1

ai,k(−1)k+j det(Aj,K =

{
det(A) i = j

0 i 6= j

because if i 6= j, this is the determinant of A with the j-th row replaced by the i-th row.
So it is 0.

Corollary 15.1. A ∈ GLn(R) ⇐⇒ det(A) ∈ R×. In this case, A−1 = det(A)−1 ad(A).

Corollary 15.2. If V is free of rank n, then T : V → V is invertible iff det(T ) ∈ R×.

15.4 Change of basis

Let V,W be free R-modules of rank n,m respectively. Let B = (v1, . . . , vn) and C =
(w1, . . . , wm) be ordered bases of V and W . Let T : V → W be an R-module homomor-
phism. Then A = (ai,j) represents T with respect to B and C if

T (vj) =

m∑
i=1

ai,jwi

for all 1 ≤ j ≤ n.
B corresponds to ϕB : Rn → V , where ϕB(ei) = vi. Given T : V → W , we get

ϕ−1
C ◦ T ◦ ϕB : En → Rm is A ∈Mm,n(R) using the standard basis.

Lemma 15.1. Let T ′ : U → V and T : V → W be R-module homomorphisms where the
modules have bases B, C, C, and D, respectively. Let A′ representa T ′ with respect to
B and C, and lt A represent T with respect to C and D. Then AA′ represents TT ′ with
respect to B and D.

Proof. We can see

ϕ−1
D ◦ T ◦ T

′ ◦ ϕB = (ϕ−1
D ◦ T ◦ ϕC) ◦ (ϕ−1

C ◦ T
′ ◦ ϕB).

The first part is representaed by A, and the latter part is represented by A′.

Definition 15.3. Let B,B′ be bases of V V . The change of basis matrix QB,B′ from
B to B′ is the matrix representing TB,B′ : V → V with TB,B′(vi) = v′i with respect to B
and B′ is the matrix representing ϕ−1

B TB,B′ϕB = ϕ−1
B ◦ ϕB′ .
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16 Change of Basis, Characteristic Polynomials, Trace, and
Localization of Modules

16.1 Change of basis

Last time, we discussed QB,B′ , the change of basis matrix from B → B′.

Remark 16.1. From the definition, we can see Q−1
B,B′ = QB′,B.

Theorem 16.1 (change of basis). Let T : V →W be a homomorphism of free R-modules
of finite rank. Let B and B′ be ordered basis of V , and let C and C ′ be ordered bases of W .
If A represents T with respect to B and C, then QC′,C′AWB,B′ represents T with respect
to B′ and C ′.

Proof. Note that
ϕ−1
C′ TϕB′ = (ϕ−1

C′ ϕC)(ϕ−1
C TϕB′)(ϕBϕ

−1
B ).

The left hand side represents T with respect to B′ and C ′. The right hand side terms are
represented by Q−1

C,C′ , A, and QB,B′ , respectively.

Definition 16.1. A and A′ in Mn(R) are similar if there exists some Q ∈ GLn(R) such
that A′ = Q−1AQ.

Definition 16.2. A is diagonalizable if it is similar to a diagonal matrix.

16.2 Characteristic polynomials and trace

Now suppose that R = F is a field.

Definition 16.3. The characteristic polynomial cT ∈ F [x] of an F -linear trnasforma-
tion T : V → V of vector spaces is det(x id−T ).

Here, x id−T : F [x] ⊗F V → F [x] ⊗F V , where x id−T is really x ⊗ id− id⊗T . This
is a map of free modules of finite rank. Similarly, we have cA(x) ∈ F [x] for A ∈ Mn(F ),
where cA(x) = det(xI −A), and xI −A ∈Mn(F [x]).

Remark 16.2. cT (x) = cA(x) for A representing T with respect to some basis B. This is
independent of the basis B. Let H = Q−1AQ. Then

cH(x) = det(xI −Q−1AQ) = det(Q−1(xI − a)Q)

= det(Q)−1 det(xI −A) det(Q) = det(xI −A)

= cA(x).

Remark 16.3. If T (v) = λv for v ∈ V, λ ∈ F , then cT (λ) = det(λ id−T ) = 0. So λ id−T
is not invertible.
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Definition 16.4. The trace of a matrix A = [ai,j ] ∈Mn(R) is tr(A) =
∑n

i=1 ai,i.

tr : Mn(R)→ R is an additive homomorphism of R-modules.

Lemma 16.1. cA(a) = xn − tr(A)xn−1 + · · ·+ (−1)n det(A).

Proof. To get the constant term, we have

cA(0) = det(−A) = (−1)n det(A).

To get the largest nonzero term, note that

det(xI −A) =
∑
σ∈Sn

(sign(σ))(xδ1,σ(1) − a1,σ(1)) · · · (xδn,σ(n) − an,σ(n)).

The coefficient of xn−1 comes form the term with σ = id:

(x− a1,1) · · · (x− an,n) = xn − (a1,1 + · · ·+ an,n)xn−1 + · · ·

Definition 16.5. If Tv = λv with v 6= 0, then λ ∈ F is called an eigenvalue of T , and v
is called an eugenvector for T . Then Eλ(T ) = {v ∈ V : Tv = λv} is an F -subspace of V
called the λ-eigenspace for T .

If T : V → V is an F -linear transofrmation, then V has an F [x]-module structure by
f(x) · v := f(T )(v). We want to study the module structure. We might as well study the
structure of finitely generated modules over PIDs.

16.3 Localization of modules

Let R be a commutative ring, let M be an R-module, and let S be a multiplicatively closed
subset of R.

Lemma 16.2. The relation ∼S on S ×M defined by (s,m) ∼S (t, n) is there exists some
r ∈ S such that r(sn− tm) = 0 is an equivalence relation.

Definition 16.6. The localization of M by S, called S−1M is the set of equivalence
classes under ∼S . We write m/s for the equivalence class of (s,m).

Lemma 16.3. S−1M is an S−1R-module under the operations

m

s
+
n

t
=
tm+ sn

st
,

r

s
· m
t

=
rm

st
.

Example 16.1. Let p ⊆ R be a prime ideal. Let Sp = R \ p. Then Rp = S−1
p R. So

Mp = S−1
p M is an Rp-module.

Example 16.2. Let R = Z and M = Z/3Z⊕ Z/5Z⊕ Z2. Then M(3)
∼= Z/3Z⊕ Z2

(3), is a

Z(3)-module, where Z(3) = {a/b : 3 - b}.
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17 Localization of Modules, Torsion, Rank, and Local Rings

17.1 Localization of modules

Let R be a commutative ring and S ⊆ R be multiplicatively closed. If M is an R-module,
we can define the localization S−1M , which is an S−1R-module.

Example 17.1. Let S be the set of nonzero non-zero divisors in R. Then S−1R = Q(R)
is called the total quotient ring of R. The module S−1M is a Q(R)-module. If R is an
integral domain, Q is a field, so S−1M is a vector space.

If M is and R-module and N is an S−1R-module,

HomS−1R(S−1M,N) ∼= HomR(M,N).

That is, localization is a left-adjoint to the forgetful functor.
Localization satisfies a universal property: For any φ : M → N , where N is an S−1R-

module,

M N

S−1M

φ

Φ

where Φ(m/s) = s−1φ(m).

Proposition 17.1. S−1M ∼= S−1R⊗RM as S−1R-modules.

Proof. Let S−1R ×M → S−1M send (r/s,m) 7→ (rm)/s. This is left S−1R-linear and
right R-linear, so we get a map S−1R ⊗ RM → S−1M of S−1R-modules. Conversely, we
have the R-module homomorphism M → S−1R⊗RM sending m 7→ 1⊗m. The universal
property gives a map S−1M → S−1R ⊗R M sending m/s 7→ s−1 ⊗m. Check that these
are inverse maps.

17.2 Torsion and rank

Let Q = Q(R) be the total quotient ring of R.

Definition 17.1. If M is an R-module, then m ∈M is torsion if there exists some r ∈ S
such that rm = 0.

Mtor = {m ∈M : m torsion} is an R-submodule of M .

Lemma 17.1. Mtor = ker(M → Q⊗RM).

Proof. m ∈Mtor iff m/1 = 0 in Q⊗RM , since this is isomorphic to S−1M .
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Example 17.2. Let A = Z2 ⊕ Z/2Z ⊕ Z/3Z. Then Z/2Z ⊕ Z/3Z = Ator is the torsion
part.

Definition 17.2. We say M is torsion-free if Mtor = 0.

Definition 17.3. The annihilator of M (in R) is Ann(M) := {r ∈ R : rm = 0∀m ∈M}.

This is an ideal of R.

Lemma 17.2. If R is an integral domain and M is finitely generated over R, then
Ann(M) 6= 0 if and only if M = Mtor.

Proof. ( =⇒ ): If Ann(M) 6= 0, then there exists some r 6= 0 in M such taht rm = 0 for
all m ∈M . So m ∈Mtor for all m ∈M .

( ⇐= ): Let m1, . . . ,mn ∈ M generated M as an R-module. Let e1, . . . , rn ∈ R \ {0}
be such that rimi = 0 for all i. THen r1 · · · rnm = 0 for all m ∈M . Since R is an integral
domain, r1 · · · rn 6= 0, so r1 · · · rn ∈ Ann(M).

Definition 17.4. The rank of an R-module over an integral domain R is rankR(M) =
dimQ(Q⊗RM), if this dimension is finite.

Proposition 17.2. rankR(M) is the maximal number of R-linearly independent elements
in M .

Proof. An element of Mtor is by itself linearly dependent. We may replace M by M/Mtor,
so we may suppose M is R-torsion free. Them M → Q ⊗R M is an injection. M has
≤ dimQ(Q⊗RM) = rankR(M) =: n linearly independent elements. If v1, . . . , vn ∈ Q⊗RM
is a basis over Q, then there exists some r ∈ R such that rv1, . . . , rvn ∈M , and the rvi are
R-linearly independent. So we have at least n R-linearly independent elements in M .

17.3 Local rings

Definition 17.5. A commutative ring R is local if it has a unique maximal ideal m.

If R is local, R/m is a field, called the residue field of R.

Proposition 17.3. Let R be commutative, and let p ⊆ R be a prime ideal. Then Rp is a
local ring with maximal ideal pRp. The ideals of Rp are Rp and IRp with I ⊆ p.

Lemma 17.3. If R is local and m is maximal, then R \m = R×.

Proof. If a ∈ R \m, then (a) = R. So a ∈ R×. Conversely, if a /∈ R×, then (a) 6= R, so
(a) ⊆ m. So a ∈ m.

Lemma 17.4. If R is commutative an m ⊆ R is maximal, then R/m ∼= Rm/mRm.
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Proof. Look at R/m → Rm/mRm given by r + m 7→ r/1 + mRm. These are both fields,
so this is an injection. If r ∈ R and u ∈ R \m, then there eixsts some r ∈ R \m such that
uv = 1 mod m. Then vr +m 7→ (vr)/1 +mRm = r/n+mRm. So this is onto.

Proposition 17.4. Let R be commutative and M be an R-module. The following are
equivalent.

1. M = 0

2. Mp = 0 for all prime ideals p ⊆ R

3. Mm = 0 for all maximal ideals m ⊆ R.

Proof. Each of these is a special case of the last, so we just need to show (3) =⇒ (1). Let
m ∈ M \ {0}. Let U = Ann(Rm) = {r ∈ M : rm = 0}. I is proper, so I ⊆ m for some
maximal ideal m.2 If r/u ∈ Rm is such that (r/u)m = 0 ∈Mm, then there exists s ∈ R\m
such that srm = 0. Then sr ∈ m, so r ∈ m as m is prime. So Ann(Rmm) ( Rm. Then
m/1 6= 0 in Rm.

Next time, we will prove the following important theorem.

Lemma 17.5 (Nakayama). If M is a finitely generated module over a local ring (R,m)
such that mM = M , then M = 0.

Remark 17.1. What does the condition mM = M mean? M/mM is an R/m-vector
space. This says that if M/mM = 0, then M = 0.

2This uses Zorn’s lemma.
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18 Nakayama’s Lemma and Structure Theory of Finitely
Generated Modules Over PIDs

18.1 Nakayama’s lemma and consequences

Lemma 18.1 (Nakayama). If M is a finitely generated module over a local ring (R,m)
such that M/mM = 0, then M = 0.

Proof. Let m1, . . . ,mn ∈ M generate M . Then mM = M , so m1 ∈ mM ; that is there
exist ai ∈ m such that m1 =

∑n
i=1 aimi. So (1− a1)m1 =

∑n
i=1 aimi. and 1− a1 ∈ R× =

R \m. So m1 ∈ span({m2, . . . ,mn}). By recursion, M can be generated by 0 elements, so
M = 0.

Corollary 18.1. Let M be a finitely generated R-module, where (R,m) is local. Let X ⊆M
be such that {x + mM : x ∈ X} generates M/mM as an R/m-vector space. Then X
generates M as an R-module.

Proof. Let N = Rx ⊆M . Then N +mM = M . Now M/N = (N +mM)/N = m(M/N).
So by Nakayama’s lemma, M/N = 0, so M = N .

Here’s how we use this.

Example 18.1. Do the tuples (111, 107, 50), (23,−17, 41), (30,−8, 104) span Q3 as a Q-
vector space? They will if they span Z3

(p) for a prime p. By Nakayama’s lemma, it suffices to

check if they generate Z(p)/pZ(p)
∼= Z/pZ. For p = 3, the tuples are (0,−1,−1), (−1, 1,−1),

and (0, 1,−1). These triples span F3
3, so the otiginal set spans Q3.

Lemma 18.2. Let (R,m) be local, and let M be a finitely generated free module over
R. Let X ⊆ M . If the image of X in M/mM is R/m-linearly independent, then X is
R-linearly independent and can be extended to a basis of M .

Proof. Let X be the image of X in M/mM . Extend X to a basis B of M/mM . By the
corollary, any lift B of B spans M , and we can choose B to contain X. We claim that B is
R-linearly independent. Say B = {m1, . . . ,mn}. Consider

∑n
i=1 aimi ∈ M , where ai ∈ R

and are not all 0. Let k ≥ 0 be minimal such that ai /∈ mk+1 for some i. Then we have
a map mk/mk+1 ⊗R M ∼= mk/mk+1 ⊗M/mM → mkM/mk+1M . These are both vector
spaces over R/m. This map is an isomorphism if M = R. In general, M ∼=

⊕n
i=1R, and

tensor products distribute over direct sums, so mkM/mk+1M ∼=
⊕n

i=1m
k/mk+1. Then∑n

i=1 ai ⊗mi 7→
∑n

i=1 aimi, so if the latter is 0, so is the former. But
∑n

i=1 ai ⊗mi 6= 0
since the mi are a basis of M/mM .
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18.2 Structure theory of finitely generated modules over PIDs

Let R be a PID, and let Q = Q(R).

Lemma 18.3. Any finitely generated R-submodule of Q is cyclic (generated by a single
element).

Proof. If M ⊆ Q is a finitely generated R-submodule ,then M =
∑n

i=1Rαi, where αi ∈ Q.
Then there exists a nonzero d ∈ R such that dαi ∈ R for all i. Then dM ⊆M , so dM = (a),
where a ∈ R. Since d : M → dM is an isomorphism, M = R(a/d).

Proposition 18.1. Let V be an n-dimensional Q-vector space, and let M ⊆ V be a finitely
generated R-submodule. Then there exists a basis B = {v1, . . . , vn} of V such that M is a
fer R-module with basis {v1, . . . , vk} (k ≤ n).

Proof. WIthout loss of generality, M 6= 0. Take m1 ∈ M \ {0}. Then Qm1 ⊆ V is a
1-dimensional Q-vector space. Then M ∩Qm1 = Rv1 for some v1 ∈M by the lemma. Let
M = M/Rv1, and let V = V.Qv1. Then M → V is an injection. By induction on n, there
exist v2, . . . , vn ∈ V such that M is free on v2 +Rv1, . . . , vk +Rv1 with k ≤ n, and vi+Rv1

form a basis of V for 2 ≤ i ≤ n. Then M =
⊕k

i=1Rvi, and V =
⊕n

i=1Qvi.

Corollary 18.2. Every finitely generated torsion-free module over a PID is free.

Proof. Let M be a finitely generated torsion-free R-module. Then we have an map M →
M ⊗R Q, which is an injection, since the kernel is Mtor = 0. It follows by the proposition
that M is free.

Corollary 18.3. Any submodule of a free R-module of rank n is free of rank ≤ n.

Proposition 18.2. Let R be a ring, and let π : M → F be a surjection of R-modules with
F free. Then there exists a spitting ι : F → M such that ι is injection and π ◦ ι = idF .
Moreover, M = ker(π)⊕ ι(F ); i.e. F is a direct summand of M .

Proof. Let B be a basis of F . For each b ∈ B, let mb ∈M be such that π(mn) = b. Define
ι : F →M by ι(b) = mb using the universal property of F . We get π ◦ ι = idF (since linear
maps that agree on a basis are equal). Then π(m − ι ◦ π(m)) = π(m) − (π ◦ ι)(π(m)) =
π(m) − π(m) = 0. So m − ι ◦ π(m) ∈ ker(π). So M = ker(π) + im(ι). If m ∈ ker(π) and
m = ι(n), then 0 = π(m) = (π ◦ ι)(n) = n, so m = 0. So these have trivial intersection,
giving us M = ker(π)⊕ im(ι).
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19 Structure Theorem for Finitely Generated Modules over
PIDs

19.1 Stripping off the torsion free part from a module

Last time, we proved the following:

Proposition 19.1. Let R be a ring, and let π : M → F be a surjection of R-modules with
F free. Then there exists a spitting ι : F → M such that ι is injection and π ◦ ι = idF .
Moreover, M = ker(π)⊕ ι(F ); i.e. F is a direct summand of M .

Proposition 19.2. If R is a PID and M is a finitely generated R-module, then M ∼=
Rn ⊕Mtor for r = rankR(M).

Proof. Let Q = Q(R). Then M → M ⊗R Q has kernel Mtor, so the image of M/Mtor →
M ⊗R Q is torsion-free and hence free. So we have a surjection M → Rr, where r =
rankR(M). Then M/Mtor ⊗R Q ∼= M ⊗R Q with kernel Mtor. So M = Mtor ⊕Rr.

19.2 Decomposition of the torsion part of a module

Let M be a finitely generated R-torsion module. Then Ann(M) = (x) for some c ∈ R
because R is a PID. The Chinese remainder theorem gives

R/(c) =

r∏
i=1

R/(πkii ),

where c=π
k1
1 · · ·πkrr is a factorization of c into distinct irreducibles. We then get

M ∼= M/cM ∼= M ⊗R R/(c) ∼=
r⊕
i=1

M ⊗R R/(πkii ) ∼=
r⊕
i=1

M/πkii M.

We have shown that

M ∼=
ki⊕
i=1

M(πi)
∼=

k⊕
i=1

M/πkii M.

R(πi) is a local ring with maximal ideal (πi), so all of its ideals have the form (πji ) for j ≥ 0
and (0). So

R/πkii R
∼= R(πi)/π

ki
i R(πi)

has ideals (πji ) for j ≥ 0 and (0).
Now let π ∈ R be irreducible with k ≥ 1, and write R = R/(πk). Let M be a finitely

generated R-module. We split into cases. If R = R/(π) is a field: Then M ∼= R
d

for some
d ≥ 0. For the next case, we need the following.
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Proposition 19.3. If M be a finitely generated R-module with πkM = 0, then M ∼=⊕n
i=0R/(π

ji) with j1 ≥ j2 ≥ · · · ≥ jn ≥ 1.

We want to induct to get this, so we need the following lemma:

Lemma 19.1. If m is a finitely generated R-module and F is a maximal free R-submodule,
then M = F ⊕ C with πk−1C = 0.

Here is a case we have to watch out for:

Example 19.1. Z is a free Z-module, and 2Z is a free Z-submodule, but the latter is not
a direct summand of the former.

Lemma 19.2. Any free R-submodule of a finitely generated R-module is a direct summand.

To prove this lemma, we first have the following fact.

Proposition 19.4. Any free R-submodule of a free, finitely generated R-module is a direct
summand.

Proof. Let A be a free R-submodule of a finitely generated free R-module B. We have the
map ι : A→ B/πB. If a ∈ A with ι(a) = 0¡ then a ∈ A∩πB, so πk−1a = 0. Then a ∈ πA.
So A/πA→ B/πB is an inclusion.

Then B/πB = A/πA ⊕ N . Last time, we showed that we can lift a basis of B/πB
containing a basis of A/πA to a basis of B containing a basis of A. Now B = A ⊕N for
some N .

Assuming lemma 1 is true, we can use the fact to prove the second lemma as follows.

Proof. If A ⊆ M is a free R-submodule, choose F to be a maximal free submodule con-
taining A. Then M = F ⊕ C, and F = A⊕D by assumption, so M = A⊕ (C ⊕D).

Now we can prove lemma 1.

Proof. Let k ≥ 2. Let f be a maximal free R-submodule. Let N = M [πk−1] = {n ∈ M :
πk−1n = 0}. Then πF ⊆ N , and πF is a free R/πk−1-submodule of N . By induction,
there exists an R/πk−1-submodule C such that N = πF ⊕ C; here, we are using lemma 2
in the inductive step.

We claim that M = F⊕C. Note that F/πF →M/N is an isomorphism. For injectivity,
F ∩ N = πF . Surjectivity follows from the maximality of F : we can lift a basis of M/N
containing a basis of F/πF to a basis of a larger or equal free R-module (inside M) by
the result from last time. Then M = N + F = C + F . Then F ∩ C = πF ∩ C = 0, so
M = F ⊕ C.
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19.3 The structure theorem

Theorem 19.1 (structure theorem for finitely generated modules over PIDs). Let R be a
PID, and let M be a finitely generated R-module.

1. There exist unique r, k ≥ 0 and nonzero proper ideals I1 ⊆ I2 ⊆ · · · Ik. such that
M ∼= Rr ⊕R/I1 ⊕ · · · ⊕R/Ik.

2. There exist unique r, ` ≥ 0 and distinct nonzero prime ideals pi (up to ordering) and
integers νi,1 ≥ νi,2 ≥ · · · ≥ νi,mi ≥ 1 for some mi ≥ 1 such that

M ∼= Rr ⊕
⊕̀
i=1

mi⊕
j=1

R/p
νi,j
i .

The ideals I1, . . . , Ik are called invariant factors, and the p
νi,j
i are called elementary

divisors.

Remark 19.1. When R = Z, this is exactly the statement of the structure theorem for
finitely generated abelian groups.

Proof. We have already proved the second part. For the first part, let bj = π
ν1,j
1 π

ν2,j
2 · · ·πν`,j`

for j = 1, . . . , k, where k is maximal such that bj 6= 1. Here, we take νi,j = 0 for j > mi.
Set Ij = (bj) and apply the Chinese remainder theorem:

R/(bj) ∼=
⊕̀
i=1

R/(π
νi,j
i ).

Uniqueness is left as an exercise.3

3:(
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20 Jordan Canonical Form

20.1 Existence and description of the Jordan canonical form

Let F be a field. Recall that an F -vector space V with a linear transformation T : V → V
is the same as an F [x]-module V ; The isomorphisms are

(V, T ) 7→ f(x) · v = f(T )(v)

(V, x : V → V )←[ V

This induces a correspondence between finite dimensional vector spaces with T : V → V
and finitely generated torsion F [x]-modules V . A finitely generated torsion F [x]-module is

V ∼=
r⊕
i=1

F [x]/(fi)

where fi ∈ F [x] is monic with deg(fi) = ni and f1 | f2 | · · · | fr. Take the basis of V :

{1, x, . . . , xn1−1, 1, x, . . . , xn2−1, . . . , 1, x, . . . , xnr−1}

A matrix representing x : V → V with respect to this basis is

A =


Af1

Af2
. . .

Afr

 .
Vf = F [x]/(f), where f is monic, irreducible and of degree n has basis 1, x, . . . , xn−1. The
matrix Af representing x : Vf → Vf is determined by:

x · xi−1 = xi, 1 ≤ i ≤ n− 1

x · xn−1 = xn = −
n−1∑
i=1

cix
i,

where f =
∑n

i=1 cix
i, cn = 1. So

Af =



0 −c0

1 0 −c1

1
. . .

...

0
...

1 −cn−1

 ,
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the companion matrix to f . The characteristic polnynomial is

cT (x) = cA(x) = cAf1 (x) · · · cAfr (x),

where

cAf (x) =

∣∣∣∣∣∣∣∣∣∣∣∣

x c0
−1 x c1

−1
. . .

...

x
...

−1 x+ cn−1

∣∣∣∣∣∣∣∣∣∣∣∣

= x

∣∣∣∣∣∣∣∣∣∣∣∣

x c1
−1 x c2

−1
. . .

...

x
...

−1 x+ cn−1

∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)n−1c0

∣∣∣∣∣∣∣∣∣
−1 x

−1 x
. . . x

−1

∣∣∣∣∣∣∣∣∣
= x

(
f − c0

x

)
+ c0

= f.

So cT (x) = f1 . . . fr. Then Ann(V ) = (fr) = (mT (x)), where mT (x) is the minimal
polynomial.

Assume cT (x) splits completely (e.g. F is algebraically closed. By the structure theo-
rem, we can write

V ∼=
t⊕

j=1

F [x]/(x− λj)nj ,

where λj ∈ F . Then

V =
m⊕
i=1

Vλi , where

tλ⊕
j=1

F [x]/(x− λi)nλ,j

by grouping the terms with the same λ together. Let

Vn,λ = F [x]/(x− λn).

Take the basis (x− λ)n−1, (x− λ)n−2, . . . , 1. Then

x · (x− λn−i = λ(x− λ)n−i + (x− λ)n−i+1, 2 ≤ i ≤ n

x · (x− λ)n−1 = λ(x− λ)n−1
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Then

Jn,λ



λ 1
λ 1

λ
. . .

. . . 1
λ

 ∈Mn(F )

is called a Jordan block, and the matrix

A =

Jn1,λ1

. . .

Jnt,λt


represents x : V → V with respect to the basis

(x− λn1−1
1 , . . . , 1, (x− λ2)n2−1, . . . , 1, . . . , (x− λt)nt−1, . . . , 1.

The characterisitc polynomial is

cAn,λ(x) =

∣∣∣∣∣∣∣∣∣
x− λ −1

x− λ
. . . −1

x− λ

∣∣∣∣∣∣∣∣∣ = (x− λ)n.

20.2 Eigenvalues and eigenspaces

Proposition 20.1. λ is an eigenvalue of T iff λ = λi for some i (where λi are those
appearing in the Jordan canonical form).

Proof. Look at Jλ,n. Then Jλ,ne1 = λe− 1, and (Jλ,n− λI)ei = ei−1. λ is an eigenvalue of
R iff λ is on the diagonal of A.

Definition 20.1. The generalized eigenspace of T for λ is

{v ∈ V : (T − λI)mv = 0 for some m ≥ 0}

Proposition 20.2. ct(x) splits completely iff V s a direct sum of its generalized eigenspaces.

Example 20.1. Let

A =

 2 2 3
1 3 3
−1 −2 −2

 .
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The characteristic polynomial is cA(x) = (x − 1)3. We have 3 possibilities for the Jordan
canonical form: 1

1
1

 ,
1 1

1
1

 ,
1 1

1 1
1

 .
Note that

A− I =

 1 2 3
1 2 3
−1 −2 −3


has nullspace spanned by  2

−1
0

 ,
 3

0
−1

 .
So we must be in the 2nd case. Look at

(A− I)e1 = e1 + e2 − e3.

Then we have the basis
B = (e1, e1 + e2 + e3, 2e1 − e2),

and A in this basis is

J =

1 1
1

1

 = Q−1AQ,

where Q is the change of basis matrix from the standard basis to B. We can calculate

Q =

1 1 2
0 1 −1
0 −1 0

 .
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21 Elementary Symmetric Functions and Discriminants

21.1 Elementary symmetric functions

Definition 21.1. If F is a field and x1, . . . , xn are indeterminates, for 1 ≤ k ≤ n, the k-th
elemetary symmetric polynomial in x1, . . . , xn is sn,k ∈ F [x1, . . . , xn] given by

snk =
∑

1≤i1<i2<···<ik≤n
xi1 · · ·xik =

∑
P⊆[n]
|P |=k

∏
i∈P

xi.

Example 21.1. Here are some examples of elementary symmetric polynomials.

sn,1 = x1 + · · ·+ xn

xn,n = x1 · · ·xn
xn,2 = x1x+ 2 + x1x3 + · · ·+ x1 · · ·xn + x2x3 + · · ·+ x2x2 + · · ·+ xn−1xn

The module generated by these polynomials is isomorphic to T k(F⊕n)Sk ∼= Symk(F⊕n)
if k! ∈ F×.

Proposition 21.1. F (x1, . . . , xn)/F (sn,1, . . . , sn,n) is finite, Galois with Galois group Sn.

Proof. Call this extension K/E. Then

f(y) =

n∏
i=1

(y − xi) =

n∑
i=1

(−1)n−isn,iy
i

has roots x1, . . . , xn. So K is the splitting field of f over E. If ρ ∈ Sn, there exists a unique
φ(ρ) ∈ AutR(K) such that φ(ρ)(h(x1, . . . , xn)) = h(xρ(1), . . . , xρ(n)). Then φ(ρ)(sn,k) =
sn,k) so |phi(ρ) ∈ Gal(K/E). So φ : Sn → Gal(K/E) is injective. This is also onto as
[K : E] ≤ deg(f)! = n!.

Corollary 21.1. Every finite group is the Galois group of some field extension.

Proof. If H ≤ Sn, take Gal(K/KH).

Whether this happens for extensions of Q is still an open problem. This is false over
Qp, the p-adic numbers, because all finite extensions of Qp are solvable.
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21.2 Discriminants

Definition 21.2. The discriminant of a monic, degree n polynomial f ∈ F [x] with
f =

∏n
i=1(x− αi) ∈ F [x] is

D(f) =
∏

1≤i<j≤n
(αi − αj)2.

Proposition 21.2. Let f ∈ F [x]. The following are equivalent:

1. f is inseparable.

2. D(f) = 0.

3. f =
∑n

i=0 aix
i and f ′ =

∑n
i=1 iaix

i share a common factor in F [x].

Proposition 21.3. D(f) ∈ F .

Proof. We may assume f is separable. Let K be the splitting field and σ ∈ Gal(K/F ).
Then

∆ =
∏

1≤i<j≤n
(xi − xj) ∈ F [x1, . . . , xn].

For σ ∈ ∆, σ(∆) = sgn(σ)∆. Then σ(∆2) = ∆2. We have an injective map Gal(K/F )→
Sn sending τ 7→ ρ(τ). This tells us that τ(D(f)) = D(f).

We have actually shown the following.

Corollary 21.2. Let f be monic, separable, and irreudcible. D(f) ∈ (F×)2 if and only if
Gal(K/F )→ An is an embedding via permutation of the roots.

Example 21.2. Let f = x2+ax+b. Let α, β be the roots in F . We also have F (α) = F (β).
Then −a = α+ β, and b = αβ.

D = D(f) = (α− β)2 = a2 − 4b.

If char(F ) = 2, then a2 − 4b = a2. So F (α)/F is trivial if a 6= 0 and inseparable if a = 0.
If char(F ) 6= 2, then F (a)/F is separable. Then a2 − rb ∈ F 2 ⇐⇒ α ∈ F . The quadratic
formua gives us that F (α) = F (

√
D).

Example 21.3. Suppose char(F ) 6= 3, and let f = x3 + ax2 + bx + c ∈ F [x]. If we let
y = x+ 1/3, then

f(x) = f(y − a/3) = y3 + (−a2/3 + b)︸ ︷︷ ︸
p

y + (3a2/27− ab/3 + c)︸ ︷︷ ︸
q

.
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So we have gotten rid of the degree 2 term. Let g = x3 + px + q ∈ F [x]. Let K be the
splitting field of f over F , and let α, β, γ ∈ K be the roots of g. Then

s3,1(α, β, γ) = α+ β + γ = 0

s3,2(αβ, γ) = p

s3,3(αβ, γ) = −αβγ = q

Then
0 = (α+ β + γ)2 = α2 + β2 + γ2 + 2p

p = (αβ + αγ + βγ)2 = α2β2 + α22γ2 + β2γ2.

We can the compute
g′ = 3x2 + p = s3,2(x− α, x− β, x− γ)

g′(x) = 3α2 + β = (α− β)(α− γ)

So in the end, we get

−D(g) = (3x2 + p)(3β2 + p)(3γ2 + β) = 27q2 + 4p3.

Then observe that
D(f) = D(g) = −27q2 − 4p3.

If f is irreducible, then Gal(K/F ) → S3 is an embedding and the Galois group has order
divisible by 3. So this is isomorphic to A3

∼= Q/3, or it is isomorphic to S3 itself. We get
Gal(K/F ) ∼= Z/3Z if D(f) ∈ (F×)2, and Gal(K/F ) ∼= S3 otherwise.
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22 Norm, Trace, Characters, and Hilbert’s Theorem 90

22.1 Norm and trace

Definition 22.1. Let E/F be a finite extension. For α ∈ E, let mα : E → E be x 7→ xα.
The trace trE/F : E → F and norm NE/F : E → F send α 7→ tr(mα) and α 7→ det(mα),
where we view mα ∈ EndF (E) as a matrix.

Remark 22.1. mα+λβ = mα+λmβ, so the trace is a linear map. The norm is multiplicative
because mαβ = mα ◦mβ.

Proposition 22.1. Let E/F be finite with x ∈ E. Then

NE/F (x) =
∏

σ∈EmbF (F (x))

σ(x)N =
∏

σ∈EmbF (E)

σ(x)[E:F ]i ,

trE/F (x) = N
∑

σ∈EmbF (F (x))

σ(x) =

 ∑
σ∈EmbF (E)

σ(x)

 [E : F ]i,

where N = [F (x) : F ]i[E : F (x)] = [F (x) : F ]i[E : F (x)]i[E : F (x)]s

Proof. In each case, the second equality follows from

N = [F (x) : F ]i[E : F (x)]

= [F (x) : F ]i[E : F (x)]i[E : F (x)]s

= [E : F ]i[E : F (x)]s.

Case 1: E = F (x): Let n = [F (x) : F ], let fx(t) =
∑n

i=0 a − iti be the minimal
polynomial of x over F . We can write fx(t) =

∏
σ∈EmbF (F (x))(t − σ(x))[F (x):F ]i . Let β

be the basis {1, x, . . . , xn−1 of F (x). We want to show that fx(t) is the characteristic
polynomial of mx. The matrix of mx is

[mx]β =



0 0 · · · 0 −a0

1 −a1

1
...

. . . −an−2

1 −an−1

 .

Then the characteristic polynomial of mx is
∑n

i=0 ait
i. So

tr(E/F (x) = tr(mx) = −an−1 = [F (x) : F ]i
∑

σσ∈EmbF (F (x))(x)
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NE/F (x) = det(mx) = (−1)na0 =
∏

σ∈inEmbF (F (x))

σ(x)[F (x),F ]i

For the general case, let {y−1, . . . , yk} be an F (x)-basis for E. Then E =
⊕k

i=1 F (x)yi.
is a decomposition into mx-invariant subspaces (k = [E : F (x)]). So β = {xiyj} is a basis
for E/F , and

[mx]β =


mx

mx

. . .

mx


is block diagonal with blocks of the type of the previous case. So

tr(mx) = [E : F (x)][F (x) : F ]i
∑

σσ∈EmbF (F (x))(x)

det(mx) =
∏

σ∈EmbF (F (x))

σ(x)[E:F (x)][F (x):F ]i .

Corollary 22.1. Let E/K/F be finite. Then

NK/F = NE/F ◦NK/E ,

trK/F = trE/F ◦ trK/E .

Proof. Let x ∈ K. Then

NE/F (NK/E) =
∏

σ∈EmbF (E)

σ

 ∏
τ∈EmbE(K)

τ(x)


Any ϕ : K → F can be written as σ̂ ◦ τ for some unique |sigma ∈ EmbF (E) and τ ∈
EmbE(K).

K F

E

F

ϕ

σ

Then τ = ϕ ◦ σ̂−1 fixes E. So

NE/F (NK/E) =
∏
σ

∏
τ

σ̂τ(x) =
∏

ϕ∈EmbF (K)

ϕ(x).
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22.2 Characters and Hilbert’s theorem 90

Theorem 22.1 (Hilbert’s theorem 90). Let E/F be finite, Galois with cyclic Galois group
G = 〈σ〉. Then

ker(NE/F ) = {σ(x)/x : x ∈ E×},

ker(trE/F ) = {σ(x)− x : x ∈ E}.

The ⊇ containments require no conditions, so we need to prove the other containments.
To prove this, we need a bit of character theory.

Definition 22.2. Let G be a group, and let E be a field. A character on G with values
in E is a group homomorphism χ : G→ E×.

The set of all characters charF (G) ⊆ Fun(G.E) is subset of an E-vector space.

Lemma 22.1. charE(G) is linearly independent.

Proof. Let {χ1, . . . , χm} be a minimal linearly dependent set. Let
∑∞

i=1 aiχi = 0 with all
ai 6= 0. Choose h ∈ G such that χ1(h) 6= χm(h). Let bi = ai(χi(h) − χm(h)) ∈ E; then
b1 6= 0 and bm = 0 (by definition). Now for g ∈ G,

m−1∑
i=1

biχi(g) =
m−1∑
i=1

a− iχi(h)χi(g)− aiχm(j)χi(g)

=
m−1∑
i=1

aiχi(hg)− χm(h)
m−1∑
i=1

aiχi(g)

= −amχm(hg)− χm(h)(−amχm(g))

= −amχm(hg) + a−mχm(hg)

= 0.

This contradicts the minimality of {χ1, . . . , χm}.

We can now prove Hilbert’s theorem 90.

Proof. We want to show that ker(NE/F ) = {σ(x)/x : x ∈ E×}. Take x ∈ ker(NE/F ). Then

χx =

n−1∑
i=0

i−1∏
j=0

σj(x)

σi

is a character. Then

χx(y) = y + xσ(y) + xσ(x)σ2(y) + · · ·+ xσ(x)σ2(x) · · ·σn−2(x)σn−1(y).
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The idea is we want to find a fixed point of applying σ and multiplying by x. This is
because if y 6= 0,

x =
σ(y)

y
⇐⇒ x =

y

σ(y)
⇐⇒ σ(y)x = y.

For all y ∈ E, we have that xσ(χx(y)) = χx(y). If χx(y) 6= 0, we are done because
x = χx(y)/σ(χx(y)). So χx is a nonzero linear combination of distinct characters and is
hence nonzero by the lemma. Thus, there exists y ∈ E× such that χx(y) 6= 0.

We will do the trace next time.
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23 Discriminants of Linear Maps

23.1 Hilbert’s theorem 90

Let’s complete our proof of Hilbert’s theorem 90.

Theorem 23.1 (Hilbert’s theorem 90). Let E/F be finite, Galois with cyclic Galois group
G = 〈σ〉. Then

ker(NE/F ) = {σ(x)/x : x ∈ E×},

ker(trE/F ) = {σ(x)− x : x ∈ E}.

Last time, we proved the result for the trace.

Proof. dim ker(tr) ≥ n − 1, where n = [E : F ]. Since ker(trE/F ) ⊇ {σ(x) − x : x ∈ E}, it
suffices to show that trE/F 6= 0. Write the trace as trE/F =

∑
σ∈G σ. This is a nonzero

linear combination of characters, so trE/F 6= 0.

23.2 Discriminants of linear maps

Recall that if f ∈ F [t] factors in F as f =
∏n
i=1(t−αi), then the discriminant is disc(f) =∏

1≤i<j≤n(αi − αj)2. If F (α) = E/F is Galois and f is the minimal polynomial of α, then
we can embed G→ An iff disc(f) is a square in F .

Let V be an F -vector space with dim(V ) = n. The space {ψ : V ⊗ V → F} of bilinear
forms on V has dimension n2. Let β = {v1, . . . , vn} be an ordered basis for V . Then

Hom(V ⊗F V, F ) ∼= Mn(F ),

via the maps
ψ 7→Mψ = [ψ(vi ⊗ vj)]i,j ,

ψM (vi ⊗ vj 7→ v>i Mvj)←[ M.

Definition 23.1. The discriminant of ψ (with respect to β) is Discβ(ψ) = det(Mψ).

Proposition 23.1. Let T : V → V be linear with basis β of V . Let T⊗T : V ⊗V → V ⊗V .
Then

Discβ(ψ ◦ T ⊗ T ) = det(T )2 Discβ(ψ).

Proof. ψ(Tvi, T vj) = ([T ]β, ei)
>Mψ[T ]βej , so

Mψ◦T⊗T = [T ]>βMψ[T ]β.
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Let E/F be a field extension, and let β = {v1, . . . , vn} be a bassi for E/F . Let

E ⊗ E m−→ E
trE/F−−−→ F

send v ⊗W 7→ tr(vw). Call this composition map tr.

Proposition 23.2. Let EmbF (E) = {σ1, . . . , σn}. Define Q = [σi(vj)]i,j. Then Mtr,β =
Q>Q. In particular,

Discβ(tr) = det(Q)2.

Proof.

tr(vi, vj) =
n∑
k=1

σk(vivj)

=
n∑
k=1

σk(vi)σk(vj)

= (Q>Q)i,j .

Let f(t) =
∏n
i=1(t − αi) ∈ F [t] be irreducible and separable. Consider F (α1)/F . We

have the nice basis β = {1, α1, . . . , α
n−1
1 }. THen EmbF (F (α)) = {σi : α1 7→ αi}. Then

Q(α1, . . . , αn) =


1 α1 · · · αn−1

1

1 α2 · · · αn−1
2

...
...

...
...

1 αn · · · αn−1
n


is the Vandermonde matrix.

Proposition 23.3. det(Q(α1, . . . , αn)) =
∏

1≤i<j≤n(αj − αi).

Proof. ∣∣∣∣∣∣∣∣∣
1 α1 · · · αn−1

1

1 α2 · · · αn−1
2

...
...

...
...

1 αn · · · αn−1
n

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 0 · · · 0

1 α2 − α1 · · · αn−2
2 (α2 − α1)

...
...

...
...

1 αn − α1 · · · αn−2
n (αn − α1)

∣∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣∣
α2 − α1 · · · αn−2

2 (α2 − α1)
...

...
...

αn − α1 · · · αn−2
n (αn − α1)

∣∣∣∣∣∣∣
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= (α2 − α1)

∣∣∣∣∣∣∣∣∣
1 α2 · · · αn−2

1

1 α3 · · · αn−2
2

...
...

...
...

1 αn · · · αn−2
n

∣∣∣∣∣∣∣∣∣ .
This is the Vandermonde determinant for n− 1 variables. By induction, we are done.

So if F (α)/F is eparable and f is the minimum polynomial of α, then

Disc(f) = det(Q(α1, . . . , αn))2 = Disc{1,α,...,αn−1}(tr)

Proposition 23.4. Let F (α)/F be separable of degree n, and let f be the minimum poly-
nomial of α. Then

Disc(f) = (−1)n(n−1)/2NE/F (f ′(α))/

Proof. Let f(r) =
∏n
i=1(t−αi). Then f ′(t)−

∑n
i=1

∏
j 6=i(t−αj), and f ′(αi) =

∏
j 6=i(αi−αj).

Then

NE/F (f ′(αi)) =
n∏
j=1

σj(
∏
j 6=i

(αi − αj))

=
∏

(i,j),i 6=j

(αi − αj)

= (−1)n(n−1)/2
∏

1≤i<j≤n
(αj − αi)

= (−1)n(n−1)/2 Disc(f).

Corollary 23.1. Let E/F be separable. The discriminant of the trace form is nonzero.

Proof. Write E = F (α). Write β = {1, α, αn}. Let f be the minimum polynomial of α.
Then

Discβ(tr) = Disc(f) = ±NE/F (f ′(α)) 6= 0.
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24 Kummer Theory and Solvability by Radicals

24.1 Kummer theory

Definition 24.1. A Kummer extension of a field F is an extension generated by roots
of elements of F×

Let F be a field, and let µn = µn(F ) be the n-th roots of unity in an algebraic closure
of F of F .

Proposition 24.1. Let n ≥ 1, and let a ∈ F . Set E = F (a) ,where αn = a. Let d ≥ 1 be
minimal such that αd ∈ F .

1. E/F is Galois iff char(F ) - d and µd ⊆ E.

2. If E/F is Galois, and µd ⊆ F , then χa : Gal(E/F )→ µn such that χa(σ) = σ(α)/α
is an isomorphism onto µd.

Definition 24.2. χa is the n-th Kummer character of a.

Proof. To prove (1), let f be the minimal polynomial of α. Then f | (xd − αd), but
f - (xm−αm) for allm property dividing d (by the minimality of d. If |µd| = d, then all roots
of xd − αd are distinct. So f is separable. If |µd| = m 6= d, then xd − αd = (xm − αm)d/m.
But f | xd−αd and f - xm−αm, so f is not separable. So char(F ) - d iff E/F is separable.

Now assume that char(F ) - d. Let σ : E → F be an embedding fixing F satisfying
σα = ζα for some ζ ∈ µd. If µd ⊆ E, then ζα ∈ E, so σ(E) ⊆ E. So E/F is normal and
hence Galois. If µd 6⊆ E, then there exists σ such that ζ has order d, since f - xm−αm for
all m strictly dividing d. Then ζα /∈ E, so σα /∈ E. So E/F is not normal.

To prove (2), suppose that E/F is Galois and µd ⊆ F . Then

χa(στ) =
στ(α)

α
=
στ(α)

σ(α)

σ(α)

α
=
σα

α
σ

 τ(α)

α︸ ︷︷ ︸
∈µd⊆F

 = χa(σ) · σ(χa(τ)).

Then χa is 1 to 1 since it is onto and [E : F ] ≤ d, since f | (xd − αd).

Remark 24.1. In general, even if µ 6⊆ F , we have a map χa : Gal(E/F ) → µf send ing
σ 7→ σ(α)/α that is a 1-cocycle: χa(στ)− χa(σ) · σ(χa(τ)).

Proposition 24.2. Let char(F ) - n, and µn ⊆ F . If E/F is a cyclic extension of degree
N , then E = F (α) with αn ∈ F×.
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Proof. Let µn = 〈ζ〉. Then NE/F (ζ) = ζn = 1. Then Hilbert’s theorem 90 gives us that
there exists α ∈ E and σ ∈ Gal(E/F ) of order n such that σ(α)/α = ζ.

NE/F (α) =
n−1∏
i=0

σi(α) =
n−1∏
i=0

ζiα = ζn(n−1)/2αn = (−1)n−1αn.

Set a = −NE/F (−α) ∈ F×. Then

αn = (−1)n−1NE/F (α) = −NE/F (−α) = a ∈ F×.

24.2 Perfect pairing

Definition 24.3. An R-bilinear pairing (·, ·) : A×B → C is perfect if the induced maps
A→ HomR(B,C) and B → HomR(A,C) are both isomorphisms. It is nondegenerate if
these are both injective.

Example 24.1. Let V be an infinite-dimensional vector space over F . Then look at the
pairing V × V ∗ → F . Then we get an embedding V → Hom(V ∗, F ) = V ∗∗, which is not
in general an isomorphism. So this pairing is nondegenerate, but it is not perfect.

Theorem 24.1. Let char(F ) - n and µn ⊆ F . Let E/F be (finite) abelian of exponent di-
viding n, and set ∆ = F×∩(E×)n. Then there is a perfect pairing Gal(E/F )×∆/(F×)n →
µn sending (σ, α) 7→ σ(a1/n)/a1/n = χa(σ), and E = F ( n

√
∆) = F ( n

√
a : a ∈ ∆). In partic-

ular we have bijections between (finite) abelian extension of F of exponent dividing n and
subgroups of F× containing (F×)n (with finite index):

E 7→ F× ∩ (E×)n,

F (
n
√

∆)←[ ∆.

Proof. We have a map ∆/(F×)n → Hom(Gal(E/F ), µn) sending a 7→ χa. Then χa = 1 iff
a ∈ (F×)n. So this map is 1 to 1. Given χ : Gal(E/F )→ µn, the kernel H of χ corresponds
to K = EH with K/F cyclic of degree dividing n. By the previous proposition, there exists
some a = αn ∈ ∆ such that K = F (α). Then a 7→ χa. Then χ is some power of χa. So
this map is onto, as well.

We have a map Gal(E/F ) → Hom(∆/(F×)n, µn) sending σ 7→ (a 7→ χa(σ)). Then
σ 7→ 1 iff σ|∆ = id |∆, which is equivalent to σ|K = 1 for all cyclic K/F in E. This is
equivalent to σ = 1. This is an injective map between groups of the same order, so it is
onto.
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24.3 Solvability by radicals

Definition 24.4. A finite field extension is solvable by radicals if there exists s ≥ 0 and
fields Ei with 0 ≤ i ≤ s such that

1. E0 = F ,

2. Ei+1 = Ei( ni
√
ai) ai ∈ E×i , ni ≥ 1

3. Es ⊇ E.

If Es = E, then we call E a radical extension.4

Theorem 24.2. If f ∈ F [x] is nonconstant with splitting gield K of degree prime to
char(F ), then Gal(K/F ) is solvable if and only if K/F is solvable by radicals.

4We do this because E is just so cool.
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25 Solvability by Radicals and Integral Extensions

25.1 Solvability by radicals

Theorem 25.1. Let f ∈ F [x] be nonconstant with splitting field K of degree not divisible
by char(F ). Then K is solvable by radicals if and only if Gal(K/F ) is solvable.

Proof. Let n = [K : F ], let L = K(ζn), and let E = F (ζn), where 〈ζn〉 = µn. We claim
that K/F is solvable by radicals iff L/E is solvable by radicals. For ( =⇒ ), we adjoin the
same roots of unity. For ( ⇐= ), if L/E is solvable by radicals, then L/F is solvable by
radicals. Then K/F is solvable by radicals because K ⊆ L ⊆ Ks(ζn) (where Ks is as in
the definition of solvability by radicals).

Now Gal(L/E) ∼= Gal(K/K ∩ E) ≤ Gal(K/F ), so if Gal(K/F ) is solvable, then
Gal(L/E) is solvable. Conversely, since Gal(L/E) is solvable, and since Gal(K ∩ E/F ) ⊆
Gal(E/F ) is abelian, Gal(L/F ) solvable =⇒ Gal(K/F ) is solvable.

So we may assume that ζn ∈ F . Suppose K/F is solvable by radicals. There exists
L ⊇ L such that L/F is a radical extension. Exercise: we may choose L such that L/F is
Galois. (The idea for this is to show that the normal closure of L/F is still radical.) Tbe
Gal(L/F ) is salvable since we have fields F = L0 ⊆ L0 ⊆ L1 ⊆ · · · ⊆ Ls = L, such that
each Li/Li−1 is abelian, and Li/F is Galois.

Suppose Gal(K/F ) is solvable. Then there exist intermediate fields Ki/F which are
normal and Ks = K such that each Gal(Ki+1/Ki) is finite and abelian (given by adjoining
n-th roots of elements in the previous field). So K/F is solvable by radicals.

Corollary 25.1. If char(F ) - 6 and K is the splitting field of an irreducible polynomial of
degree ≤ 4, then K/F is solvable by radicals.

Why 4? This is because A5 is the smallest nonsolvable group.

Example 25.1. f = 2x5 − 10x + 5 has Galois group S5. It is irreducible by Eisenstein’s
criterion. It has 3 real roots.

25.2 Integral extensions

Let B be a commutative ring, and let A be a subring of B. B/A is an extension of
commutative rings.

Definition 25.1. We say β ∈ B is integral over A if β is the root of a monic polynomial
in A[x].

Example 25.2. Any element a ∈ A is integral over a, as it is the root of x− a.

Example 25.3. Let L/K be an extension of fields. If β is algebraic over K, then β is
integral over K , as it is the root of its minimal polynomial.

74



Example 25.4.
√

2 is integral over Z as the root of x2 − 2.

Example 25.5. (1−
√

5)/2 is integral over Z as the root of x2 − x− 1.

Example 25.6. 1/2 is not integral over Z. Let f =
∑n

i=1 aix
i with an = 1, ai ∈ Z. Then

f(1/2) ∈ (1/2)n + (1/2n−1)Z, so f(1/2) 6= 0.

Definition 25.2. β ∈ Q ⊆ C is an algebraic integer if it is integral over Z.

Definition 25.3. A number field is a finite extension of Q.

Proposition 25.1. Let β ∈ B. The following are equivalent.

1. β is integral over A.

2. There exists n ≥ 1 such that {1, β, . . . , βn−1} generates A[β] as an A-module.

3. A[β] is finitely generated as an A-module.

4. There exists an A[β]-submodule M of B that is finitely generated over A and faithful
(i.e. AnnA[β](M) = 0).

Proof. (1) =⇒ (2): There exists a monic f ∈ A[x] of degree n with f(β) = 0. Then
f(x) = xn +

∑n−1
i=1 a − i− 1xi, so βn = −

∑n−1
i=1 ai−1β

i ∈ A(1, β, . . . , βn−1). By recursion,
βm ∈ A(1, β, . . . , βn−1) for all M ≥ n. So A[β] is generated by {1, β, . . . , βn−1} as an
A-module.

(2) =⇒ (3): This is a special case.
(3) =⇒ (4): Let M = A[β]. Then AnnA[β](A[β]) = 0 since A[β] is free over A[β].
(4) =⇒ (1): M =

∑n
i=1Aγi ⊆ B for some γi ∈ B. Without loss of generality, suppose

β 6= 0. Then βγi =
∑n

j=1 ai,jγj , where ai,j ∈ A. So we can form a linear transformation
T : An → An by [T ]i,j = ai,j . Then f = cT (x). Since f(β) : M →M is 0 and M is faithful,
f(β) = 0.

Example 25.7. 1/2 ∈ Q is not integral over Z since Z[1/2] is not Z-finitely generated.

Definition 25.4. B/A is an integral extension if eery β ∈ B is integral over A.

Example 25.8. Z[
√

2]/Z is an integral extension. It suffices to show that α = a+ b
√

2 is
always the root of a polynomial. Take the polynomial x2 + 2az + (a2 − 2b2).

Example 25.9. Let B be a finitely generated A-module, and let M be a finitely generated
B-module. Then M is a finitely generated A-module.

Next time, we will prove the following.

Proposition 25.2. Let B = A[β1, . . . , βn]. The following are equivalent.

1. B is integral over A.

2. Each βi is integral over A.

3. B is finitely generated as an A-module.
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26 Integral Extensions and Integral Closure

26.1 Towers of integral extensions

Proposition 26.1. Let B = A[β1, . . . , βn]. The following are equivalent.

1. B is integral over A.

2. Each βi is integral over A.

3. B is finitely generated as an A-module.

Proof. (1) =⇒ (2): This is by definition.
(2) =⇒ (3): Recall the lemma that if B is a finitely generated A-module and M is

a finitely generated B-module, then M is a finitely generated A-module. So it is enough
to show (by recursion) that A[β1, . . . , βj+1] is finitely generated over A[β1, . . . , βj ] for all
0 ≤ j ≤ k − 1. So we reduce to the case B = A[β], where β is integral over A. By a
proposition from last time, B is finitely generated over A.

(3) =⇒ (1): B is a faithful B-module, and it is finitely generated over A. Take β ∈ B.
Then B is an A[β]-submodule of B that is faithful and finitely generated over A, so β is
integral over A (by the same proposition from last time).

Proposition 26.2. If B/A and C/B are integral, then so is C/A.

Proof. Let γ ∈ C. There exists a monic f ∈ B[x] with γ as a root. Let B′ be the A-
subalgebra of B generated by the coefficients of f . By the previous proposition, B′ is
finitely generated as an A-module. Then B′[γ]/B′ is integral, so B[γ] is finitely generated
as a B′ module. Then B′[γ] is finitely generated as an A-module. Thus, γ is integral over
A. So C is integral over A.

26.2 Integral closure

Definition 26.1. The integral closure of A in B is the subset of elements in B integral
over A.

Proposition 26.3. The integral closure of A in B is an A-subalgebra of B.

Proof. Look at A[α, β], where α, β ∈ B are integral over A. This is integral over A. So
α− β and αβ are integral over A.

Example 26.1. The integral closure of Z in Q is Z.

Example 26.2. The integral closure of Z in Z[x] is Z.

Example 26.3. The integral closure of Z in Q(
√

2) is Z[
√

2].
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Definition 26.2. The ring of integers OK of a number field K is the integral closure of
Z in K.

Remark 26.1. Integral closure as we have defined it is not absolute. It is relative to the
larger ring B.

Definition 26.3. A domain A is integrally closed if it is its own integral closure in its
quotient field.

Example 26.4. Z is integrally closed.

Example 26.5. Any field is integrally closed.

So this is not the same notion as algebraically closed.

Proposition 26.4. Let A be an integrally closed domain (resp. UFD). Let K = Q(A),
and let L/K be a field extension. If β ∈ L is integral over A with minimal polynomial
f ∈ K[x], then f ∈ A[x].

Proof. Let A be integrally closed. Let g ∈ A[x] be monic, having β as a root. Then
f | g in K[x]. Every root of g in K (algebraic closure) is integral over A. In K[x],
f(x) =

∏n
i=1(x− βi), where the βi are integral over A. So all coefficients of f are integral

over A and are in K. So f ∈ A[x], as A is integrally closed.
Let A be a UFD. There exists a d ∈ K such that df | g (since A is a UFD). f is monic,

so d ∈ A. g is monic, so d ∈ A×. So f ∈ A[x].

Corollary 26.1. UFDs are integrally closed.

Proof. Let A be a UFD, and let a ∈ K = Q(A) be integral over A. x − a ∈ K[x] is the
minimal polynomial. By the proposition, x− a ∈ A[x]. So a ∈ A.

Example 26.6. Z[
√

17] is not integrally closed. α = (1 +
√

17)/2 satisfies x2 − x− 4. So
Z[
√

17] is not a UFD.

Proposition 26.5. The integral closure of an integral domain A in an integrally closed
extension B/A is integrally closed.

Proof. Let A be the integral closure of A in B. Let Q = Q(A) be the quotient field of A.
Let α ∈ Q be integral over A. A[α]/A is integral (by a previous proposition). Also, A/A
is integral, so A[α]/A is integral. So α is integral over A, and α ∈ B, so α ∈ A.

Example 26.7. Let Z, the algebraic integers, be the integral closure of Z in Q ⊆ C. Then
Z is integrally closed.

Example 26.8. Let K ⊆ Q be a number field. Then the ring of integers, OK = Z ∩K, is
integrally closed.
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Proposition 26.6. Let A be an integrally closed domain with quotient field K. Let L be
an algebraic extension of K. Then the integral closure of B of A in L has quotient field L.

L

B

K

A

In fact, if β ∈ L, then β = b/d with b ∈ B, d ∈ A.

Proof. Let β ∈ L be a root of f =
∑n

i=0 aixi ∈ K[x], where an = 1. Let d ∈ A\{0} be such
that df ∈ A[x]. Consider g = dNf(d−1x) =

∑n
i=0 d

n−iaix
i ∈ A[x] is monic, and g(dβ) = 0.

So dβ ∈ B. Since b := dβ ∈ B, β = b/d.

Theorem 26.1. Let d > 1 be squarefree.

OQ(
√
d) =

{
Z[1+

√
d

2 ] d ≡ 1 (mod 4)

Z[
√
d] d ≡ 2, 3 (mod 4).

Proof. Let α = a + b
√
d ∈ OQ(

√
d), where a, b ∈ Q. If b = 0, then a ∈ Z. If b 6= 0, then α

has a minimal polynomial f = x2− 2ax+ (a2− b2d). α is integral, so f ∈ Z[x]. So 2a ∈ Z.
We have 2 cases:

1. If a ∈ Z, then b2d ∈ Z. This implies b ∈ Z, since d is squarefree.

2. If a /∈ Z, then 2a = a′, 2b = b′ ∈ Z, where a′, b′ are odd. Then a2 − b2 − d =
(a′)2−(b′)2d

4 ∈ Z. So (a′)2 ≡ (b′)2d (mod 4). The only squares in Z/4Z are 0 and 1.

So f ≡ 1 (mod 4). In this case, check that 1+
√
d

2 is integral.
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27 Ideals of Extensions of Rings

27.1 The going up theorem

Suppose B/A is an extension of commutative rings. How do ideals of A and ideals of B
compare? If we have an ideal a of A, then aB is an ideal of B. We can go back by sending
b 7→ f ∩A.

Definition 27.1. We say an ideal b ⊆ B lies over a ⊆ A if b ∩A = a.

If p is prime, then pB need not be prime.

Example 27.1. Extend Z to Z[
√

2]. Then (2) 7→ 2Z[
√

2] = (sqrt2)2. However, if q ⊆
Z[
√

2] is prime, then q ∩ Z is prime in Z.

Proposition 27.1. Let B/A be an extension of commutative rings.

1. If b ⊆ B lies over a ⊆ A, then A/a injects into B/b.

2. If S ⊆ A is a multiplicatively closed subset and B/A is integral, then so is S−1B/S−1A.

3. If B/A is integral and A is a field, then so is B.

Proposition 27.2. Suppose B/A is integral. If p ⊆ A is prime, then there exists a prime
q ⊆ B lying over p.

Proof. Consider Sp = A \ p. Let Bp := S−1
p B; this is integral over Ap. Let M ⊆ Bp be

maximal. Then m = M ∩ Ap is maximal: A/m → B/M is an injection, so by the 1st
property, A/m is a field. So p = Ap. Let ι : B → Bp. Then q = ι−1(M), so q is prime.
Then q ∩A = ι−1(M) ∩A = ι−1(Ap)ι

−1(pAp) = p.

Theorem 27.1 (going up theorem). Let B/A be integral. Let p1 ⊆ p2 be primes of A, and
let q1 ⊆ B be lying over p1. Then there exists a prime q2 ⊆ B with q2 ⊇ q1 such that q2

lies over p2.

Proof. Let A = A/p1, and let B = B/q1. Let π : B → B be the quotient map. Let
p2 := π(p2). B/A is integral, so there exists aprime q2 of B lying over p2. Then q2 =
π−1(q2) ⊇ q1. Then q2 ∩A = π−1(q2 ∩A) = π−1(p2) = p2 since p2 ⊇ p1.

27.2 The going down theorem

Proposition 27.3. Let B/A be an extension, and let B′ be the integral closure of A in
B. Then for any multiplicatively closed S ⊆ A, S−1B′ is the integral closure of S−1A in
S−1B.

That is, integral closure is preserved by localization.
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Proof. If b/s ∈ S−1B is integral over S−1A, there exists a monic f ∈ S−1A[x] f(b/s) = 0.
Write f = xn +

∑n−1
i=0

ai
si
xi with ai ∈ A, si ∈ S. Set t = s0 · · · sn−1. Then (st)nf(x/ts) ∈

A[x] has root x = bt ∈ B′. So s−1b = s−1t−1x in S−1B′.

In commutative algebra, we often study what properties are local. For example, we
showed earlier that a module is zero iff its localizations at all maximal or all prime ideals
are zero.

Proposition 27.4. Let A be an integral domain. The following are equivalent.

1. A is integrally closed.

2. Ap is integrally closed for all prime ideals p ⊆ A.

3. Am is integrally closed for all maximal ideals m of A.

Proof. Let A be the integral closure of A in Q(A). Then A = A iff A/A = 0. This is an
A-modules, so this happens iff (A/A)p = 0 for all p. Observe that (A/A)p = Ap/Ap, where
Ap = S−1

p A is the integral closure of Ap.

Theorem 27.2 (going down theorem). Let B/A be an integral extension of integral do-
mains such that A is integrally closed. Let p2 ⊆ p1 be primes of A, and let q1 ⊆ B be lying
over p1. Then there exists a prime q2 ⊆ B with q2 ⊆ q1 such that q2 lies over p2.

27.3 Integral extensions in extensions of the quotient field

Let A be an integral domain, and let K = Q(A). Let L be a finite, separable extension of
K, and let B be the integral closure of A in L. Then

Lemma 27.1.
TrL/K(B) ⊆ A, NL/K(B) ⊆ A.

Proof. The minimal polynomial f of β ∈ B lies in A[x]. Then f = xn − TrL/K(β)xn−1 +
· · ·+ (−1)n−1NL/K(β).

Proposition 27.5. There exists an ordered basis {α1, . . . , αn} of L/K contained in Bn.
Set d = D(α1, . . . , αn) and M =

∑n
i=1Aαi. Then M ⊆ B ⊆ d−1M .

Proof. Start with a basis {β1, . . . , βn} of L/K. Recall that each βi = bi/ai with bi ∈ B
and ai ∈ A. So multiplying through by a1, . . . , an, we have a basis of L/K in Bn.

Given {α1, . . . , αn}, any β ∈ L has the form β =
∑n

i=1 ciαi, where ci ∈ K. Suppose
TrL/K(αβ)]inA for all α ∈ B (e.g. this holds if β ∈ B by the lemma). Consider A 3
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TrL/K(αiβ) =
∑n

j=1 cj TrL/K(αiαj). Note that TrL/K(αiαj) is the (i, ) entry of Q =
(TrL/K(αiαj)). Then Q∗ = adj(Q), and QQ∗ = dIn. So we get

QQ∗

c1

...
cn

 =

dc1

...
dcn

 ∈ An.
So we get dβ = d

∑n
i=1 aiαi =∈

∑n
i=1Aαi = M . Then dB ⊆M , so B ⊆ d−1M .

Remark 27.1. If B is Noetherian, then M is a finitely generated torsion-free B-submodule
of L. If B were a PID, then we would get that M is free.

Now assume K/Q is a finite extension. We could define disc(K) = disc(basis of OK/Z).
This is actually independent of basis.
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