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1 Free Modules

1.1 Free modules over rings

Let R be a commutative ring.

Definition 1.1. An R-module M is free on a subset X if for any R-module N and map
f + X — N, there exists a unique R-module homomorphism ¢y : M — N such that

orlx = f.
Example 1.1. If X is a set, we can construct the free module on X: Fx =@, .x R - .

We can think of this as a functor F' from Set to R-mod. With this viewpoint, if
f:X =Y, then F(f): Fx — Fy is given by F(f)(> i, aizi) = Y iy aif(x;). So for
F : Set — R-mod,

Homget (Xv N) = Homg.mod (FX7 N)a

where this isomorphism is natural. That is, F' is left-adjoint to the forgetful functor from
R-mod to Set.

Lemma 1.1. An R-module M is free on X if and only if

1. X generates M as an R-module (i.e. for all m € M, there exist x1,...,x, € X and
ai,...,an € R such that m =Y a;x;)

2. X is R-linearly independent (i.e. if > ;| a;x; = 0 with s1,...,x, € X distinct, then
a; =0 for all i).

Proof. If M is free on X then there exists a unique isomorphism from M to F, induced
by the identity on X. Fx satisfies these two properties, so M does.

If M satisfies the two properties, then there exists a unique ¢ : Fx — M sending
x — X (since X C M). Property 1 implies that ¢ is surjective, and property 2 implies
that ¢ is injective. O

1.2 Bases and vector spaces

Definition 1.2. If X generates the R-module M and is linearly independent, we call it a
basis of the M.

Theorem 1.1. FEvery wector space V over a field has a basis. In fact, every linearly
independent set in V' s contained in a basis, and every spanning set contains a basis.

Proof. We will prove the first statement; the other two statements follow by a similar
argument. Let V' be an F-vector space, where F' is a field. Conide the set S of subsets X
of V that are F-linearly independent. (S, C) is a partially ordered set (poset). If C is a
chain, (Jxco X is linearly independent, so it is an upper bound on C. By Zorn’s lemma,
S has a maximal element B. Let W = span(B). If v € V' \ W, then B U {v} is linearly
independent, contradicting the maximality of B. Then V = W, so B is a basis. O



Example 1.2. The field condition is very important; here are counterexamples for general
rings. Let R =7Z and M = 7Z. Then 2 € Z, but 2 is not contained in a basis of Z. The set
{2,3} spans Z, but does not contain a basis.

Proposition 1.1. Let V be an F-vector space with a basis of n elements. Let Y C W.
1. IfY spans V', then |Y| > n.
2. If Y is linearly independent, then |Y| < n.
3. If |Y| = n, then Y is linearly independent iff Y spans V.

Remark 1.1. The first two properties hold for free modules with a basis of n elements as
well, but the 2nd property becomes harder to prove. For the third property, in the general
case, we just have that if Y spans and |Y| = n, then Y is linearly independent.

Corollary 1.1. If ¢ : V — W is an F-linear transformation of finite-dimensional vector
spaces over F, then dimp (V') = dimp(ker(y)) + dimp(im(p)). In particular, if dimV =
dim W, then ¢ is injective iff ¢ is surjective iff @ is an isomorphism.

1.3 Cardinality of bases
Theorem 1.2. If X andY are sets and Fx = Fy, then X andY have the same cardinality.

Proof. Suppose |Y| > |X| and first suppose that X is infinite. It suffices to show Fx
has no basis of cardinality > |X|. Suppose B C F is a basis of Fy. Every x € X
is a finite linear combination of some elements in B; let B, be the set of these. Then
| Ioex Bzl > |U,ex Bl and it generates Fx, so we can get the upper bound on cardinality
|B| < |Z x X| = |X]|. Therefore, Fx has no basis of cardinality > |X]|.

If Y is finite, let m be a maximal ideal of R. Then F' = R/m is a field, and

Fx/mFy <@ R) /m (@ R) ~(PF

zeX zeX zeX

The same is try for Fy. The isomorphism Fx & Fy induces the isomorphism of F-vector
spaces Fx/mFy = Fy /mFy, which then have bases of cardinality |X| and |Y|. Y is finite,
so X is finite and has cardinality | X| = |Y|. O



2 Introduction to Field Theory

2.1 Field extensions

Definition 2.1. A field E is an extension field (or extension) of a field F if F' is a
subfield of E.

We often write E/F to denote that E is an extension of F. F' is called the ground
field of E/F. E is an F-vector space. If E is finite dimensional over F', we say that E/F
is a finite extension.

Definition 2.2. Let E be finite dimensional over F. Then the degree [E : F] is dimp(FE).

Definition 2.3. Let S C E. We say S generates E/F if F is the smallest subfield of F
containing F' and S.

IfS={ay,...,an}, we write £ = F(aq,...,ap).
Lemma 2.1. Fvery field F is an extension of Q if char(F) =0 and I, if char(F) = p.
Proof. Q or I, here is the subfield generated by 1. O
Definition 2.4. An intermediate field E' in E/F is a subfield of E containing F.
Example 2.1. Q(i) and Q(v/2) are intermediate fields of C/Q.

Note that Q(i) = Q[i] € C and Q(v/2) = Q[v/2] C C. This is not always the case.

Example 2.2. Let Q(z) = {f/g : f,9 € Q[z],g # 0}. The field of rational functions is
Q(Qlz]). Q(=z) # Q[z]

Lemma 2.2. Let E/F be an extension and o € E. Then F(a) = Q(F|a]).
Proof. F(«a) is the smallest subfield containing F' U {a}. F[a] is the smallest subring

containing F'U{a}. The inclusion ¢ : F[a] — F(«) is injective and induces an isomorphism
Q(Fla]) = F(a) of fields. O

2.2 Algebraic extensions, minimal polynomials, and splitting fields

Definition 2.5. If E/F is an extension and a € E, then « is algebraic (over F) if
Fla] = F(«) and transcendental otherwise. E/F is algebraic if every a € E is algebraic
over F' and transcendental otherwise.

Proposition 2.1. Ifa € E is algebraic over F'. then there exists a unique monic irreducible
polynomial f € F[z] such that f(a) = 0. Moreover, Flz]/(f) = F(«) by sending g(z) —
9(@).



This f is called the minimal polynomial of o over F.

Proof. Note that 1/a = g(«) for some g € Fx]. Then ag(a) —1 =0. Set h = zg(z) — 1.
There exists a monic irreducible f | h such that f(a) = 0. If p € F|x] satisfies p(a) = 0
and f 1 p, then (f,p) = (1). But the ideal generated by « is not trivial. So f | p. The last
statement follows. O

Corollary 2.1. If « is algebraic over F, then F(«)/F is finite of degree equal to the degree
of the minimal polynomial of o with basis {1,c,...,a" 1} over F.

Proposition 2.2. If E/F is finite and o € E, then « is algebraic.

Proof. The set {1,a,...,al” ¥} is linearly depedent. The relation gives a polynomial with
a as a root. O

Corollary 2.2. If E/F is finite, then E' = F(a,...,ay) for some ay,...,a, € E.

Theorem 2.1 (Kronecker). Given nonconstant f € F[z|, there exists E/F such that E
contains a root of F.

Proof. Take F[z]/(g), where g is monic, irreducible, and g | f. O

Definition 2.6. A splitting field for nonconstant f € F[z] is a field E in which f factors
into a product of linear polynomials.

Corollary 2.3. For any nonconstant f € Fx], there exists a splitting field for f over F.
Example 2.3. A splitting field for 2% —2 (over Q) in C is Q(V/2,wV/2,w?V/2) = Q(w, V/2),

where w = 2m/3,

2.3 Degrees of extensions

Theorem 2.2. If K/E and E/F are extensions, A is a basis of E/F, and B is a basis of
K/E, then AB = A x B is a basis of K/F.

Proof. If v € K, then v = )" ¢jf3;, where ¢; € E. Then ¢; = > d; jo;, where o; € f. So

Y = Zz Zj di,jaiﬁj- So AB Spans K. If Z(Z am-ai)ﬁj = O, then Zaiyjai = 0 for all j
Then a; ; = 0 for all 4, j. O

Corollary 2.4. If K/E and E/F are finite, then [K : F] = [K : E][E : F].

Definition 2.7. Let E,E’ C K be subfields. The compositum EFE’ is the smallest
subfield of K containing E and E'.

Example 2.4. If E/F, then F(a) = EF(«).
Example 2.5. F(a, ) := F(a)(f8) = F(a)F(p).



Proposition 2.3. If E, E are finite over F' and contained in K, A is a basis of E/F, and
B is a basis of E'/F, teen AB spans EE'.

Proof. Let A ={a1,...,an}and B = {B1,...,B,}. Then EE' = F(a,...,am,f1,...,Bn) =
Flaa, ..., am, B, .-, Ba]. Note that af' ---aim € E is a linear combination over F of the
«a;s. Similarly for the ;s in E’. So the «;f0;s span EE'. O

Corollary 2.5.
[EE': F)<[E: F|[E": F).

Corollary 2.6. If [E : F] and [E' : F) are relatively prime, we get equality.
Proof. |[E : F] and [E' : F] divide [EE' : F). O
Example 2.6. Consider Q(v/2,w3V/2), where w? +w + 1 = 0. Then

[Q(V2) : QIQW*V2): Q] =9,  [Q(V2,w): Q] =[Q(V2): Q[Qw) : Q] =6.

Proposition 2.4. Let E; be subfields of K containing F' for all i in some index set I. The
the compositum E of all E; is |J F (a1, ..., ay), where n > 0, and each o is in some E;.



3 Finite Fields and Cyclotomic Fields

3.1 Finite fields

Proposition 3.1. Let F' be a field and n > 1. Let p,(F) be the n-th roots of unity in F'.
Then py,(F) is cyclic of order dividing n.

Proof. Let m be the exponent of p,(F). Then 2™ —1 =0 for all z € p,(F). So |pn(F)| <
m. Then |u,(F)| = m. O

Lemma 3.1. Let F be a finite field. Then |F| is a power of char(F).

Proof. Let p = char(F). Then F is a vector space over F,,. Then |F| = pl7Fsl. O
Corollary 3.1. If |F| = p", then F* is cyclic with F* = ppn_1(F').

Corollary 3.2. (Z/pZ)* =2 7Z/(p — 1)Z.

Lemma 3.2. Let char(F) =p and o, 8 €. Then (a + B)pk = o + Bpk.

Proof. This follows from the Binomial theorem. O

Theorem 3.1. Let n > 1. Then there exists a unique extension Fpn of IF), of degree n up
to isomorphism. If E/F, is a finite extension of degree a multiple of n, then E contains a
unique subfield isomorphic to Fyn. Moreover, Fyn CF' <= n | m.

Proof. Let Fyn be the splitting field of #P" — z over F,. Let F = {a € FpnLa?" = a}.
Note that F' is closed under addition by the lemma and is closed under multiplication and
taking inverses of nonzero elements. So F' is a field. In fact, F' is a splitting field of the
polynomial, so F' = Fn.

We know that |Fpn| < p™ because the polynomial 2P" — x has at most p" roots; we
want equality. Let a € F).. Consider the polynomial g(z) = (#*" — z)/(z — a). Then

77.71 s n__;
g(x) =YY " a"taP" =t Then

p"—1

g@)= Y " =(p" - 1a" = (0-1)1=-1£0.
=1

So P — z has p" distinct roots, giving us [Fpn : Fy] = n.
Let E have degree m, where n | m. Then E = Fym, so EX = pym_1(E). Since
ppn—1(E) € ppm—1(E), we have F' C E with F = Fpn. O

Example 3.1. [Fg : F3] = 2. We can compute that 2% + 1, 22 + x — 1, and 22 — x — 1 are
the quadratic irreducible polynomials over F3. Fg is the splitting field of each. We get

2 —r=@?+ )42z — 1) (2 -z — Dz + 1) (z—1).

10



Proposition 3.2. Let q be a power of p. Let m > 1, and let (,,, be a primitive m-th root
of unity in an extension of Fy. Then [Fq(¢m) : Fy] equals the order of q in (Z/mZ)*.

Proof.
t=[Fg(Cm) : Fg] = Fy(Cm) =F,

— m|¢*—1land mt ¢! forall j </
<= ¢ has order { in (Z/mZ)*. O

£

Proposition 3.3. Let m > 1 and m = p}* - - - p;*, where the p; are distinct primes. THen
(Z)mZ)* = (Z/p{*Z)* x --- x (Z/p*Z) %, and

Z)p" Y2 x Z)(p—1)Z p odd

Z T’Z X (]
(Z/r'2) {Z/2T_ZZ><Z/2Z p=2.1>2
Proof. The map (Z/p"7Z)* — (Z/pZ)* has kernel

14 pZ
C(zZ/p"Z)™.
e C @)

If p is odd,
(L4 PP =145 4+ (),
Then kp > k+1 < kp—1) >1 <= k >2orp >3 Soifpisodd, then
(1 +pF)P = 1+ p**1 (mod p)*¥+2. This argument gives us that 1 + p has order p"~! in
(Z/p"Z)>.
For p = 2, look at

1447

14277
Then (1 +4)% = 1+ 2/+2 (mod 2)"*3. So 1 + 4 has order 272, This gives us that
Z)2L = (—1) + (1 +42)/(1 + 2'Z) = Z)2Z x L)2" L. O

3.2 Cyclotomic fields and polynomials

Let ¢, be a primitive n-th root of 1 in an extension of Q (e.g. ¢, = omi/n ¢ C) such that

n/m _ ¢ for all m | n.

Definition 3.1. Q({,) is the n-th cyclotomic field over Q.
Remark 3.1. Q(¢,) = Q(pn), where py, is the set of n-th roots of unity in C.
Definition 3.2. The n-th cyclotomic polynomial ®,, is the unique monic polynomial

in Q[z] with roots the primitive n-th roots of 1.

11



Note that

So @, € Q[x] by induction. The degree of ®,, is p(n) = {1 <i<n:(i,n) =1}

12



4 Mobius Inversion, Cyclotomic Polynomials, and Field Em-
beddings
4.1 Mobius inversion and cyclotomic polynomials

Definition 4.1. The M&bius function p : Z>; — {—1,0, 1} is given by

(—=1)* nis a product of k distinct primes
p(n) = :
0 otherwise.

Lemma 4.1. Forn > 2,

> u(d) =

dln

> u(d) = uld)

dln dlm

Proof. First,

where m is the product of the distinct primes dividing n. Say there are k of them. Then

Zu(d):l—k:Jr(§>+~~+(—1)k:(1—1)k:0. O

dlm

Theorem 4.1 (Mdébius inversion formula). Let A be an abelian group, and let f : Z>1 — A.
Define g : Z>1 — A by g(n) = Zd\n f(d). Then

= 2_ uld)g(n/d).
d|n
Proof. By the lemma,

Y un/d)g(d) =" > un/d)f(k)
dn

dn k|d

= > uln/d)f(k)

kln dn
k|d

Z(Z ((n/k) /0)) f(k)

kln \c|n/k
= f(n). O
Corollary 4.1.

P, = H(wd — 1)mn/d),

din

13



Proof. Let A = Q(z)*, and let f send d — ®4. Then

g(n) = H Oy =2a" —1.

d midn

Now apply the Mo6bius inversion formula. O
Example 4.1. & =2z -1, ® =z +1 ,and &, = 2Pl 4+ P72 4 ... 4 2 + 1, where p is
prime. If p | n, then ®,,(z) = ®,(2P). This also gives us that

n—1

o= g 0D o

If p # q are primes,
Ppg(z) = —=

(27— 1) — 1) _ By(a)

(@7 =121 =1)  Q4(z)
8

P15 =2z —2T 4t -+ 1

Theorem 4.2. ¥, is irreduible in Q[z].

Proof. Suppose ®,, = fg with f a monic irreducible polynoimal, and let ¢ be a root of f.
For p t n prime, ¢ is a root of ®,. If (P is a root of g, then g(zP) has ( as a root, so
f(z) | g(xP). Reduce f and g (mod p). We get f,g € Fp[z]. Then g(zP) = g(z)P. Then
f 19, but f has no multiple roots in Fp, so f | . So ®, has multiple roots (mod p);
which is a contradiction. So (? is a root of f. Therefore, (¢ is a root of f for all @ € Z and
ged(a,n) =1, 80 f = ®,,. O

4.2 Field embeddings

Definition 4.2. If E, E'/F and ¢ : E — E’ is an isomorphism, we sat that ¢ fixes F
if p|p = idp. Elements « € E and 8 € E’, are conjugate over F' if there exists an
isomorphism ¢ : F(a) — F(B) fixing F with p(a) = 8.

Proposition 4.1. Let E,E'/F. Elements a € E, 8 € E' are conjugate over F if and only
if they have equal minimal polynomials in Fz].

Proof. Let «, 3 be conjugate over F. Then ¢(g(a)) = g(B) for all ¢ € F[x]. Then «,f
have the same minimal polynomial (« is a root of g(x) iff 8 is a root of g(z)).

If a,f haeve the same minimal polynomial f € F[z], then Flz|/(f) = F(«a) via
x mapstoa and Flz]/(f) = F(B) via x mapstof. O

Example 4.2. The roots of 22 + la re +1. There exists a field automorphism C — C
1 — —i fixing R, namely, complex conjugation.

14



Definition 4.3. A field embedding is a ring homomorphism of fields (necessarily injec-
tive). If ¢ : ' — M is an embedding and E/F is an extension, then ® : £ — M extends

 if ®|p = .
Example 4.3. Let ¢ : Q — R be the natural inclusion map. There are two field embeddings
extending ¢; these are Q(v/2 — R sending v/2 — /2. There are no extensions to Q(i) — R.

Theorem 4.3. Let E/F be an extension, and let o € E be algebraic over F'. Let ¢ : F toM
be an embedding, and let ¢ : Flx] — M|z] be the induced map. Let f be the minimal

polynomial of o. Then the extensions ® : F(a) — M of ¢ are in 1-1 correspondence with
the roots of ¢(f) in M via ® — P(«).

Proof. 1f p(f) has a root 5 in M, let evg be evaluation at 3. Consider ego ¢ : Flz] — M.
Then ker(eg o $5(f). Since we are working in a PID, this is equality. We get

Fla]/(f) —— M
(<]

2

F(a)

1R

where ®(a) = S.
If ®: F(a) - M extends ¢, then write f = Y"1 ¢;a’, where n = deg(f). Then

n n

P @() =) w(ci)@(a)' = (Y cia’) = ©(f(a)) = 0. a

1=0 =0

Corollary 4.2. Let E/F be finite, and let ¢ : F'— M be a field embedding. The number
of extensions of p to E — M is < [E : F].

Proof. Induct on the degree. If E = F(«a), then the number of roots of irrp(a) in M is
< [F(a) : F]. Then the number of extensions is < [F(«) : F] by the theorem. Consider

extensions of these; the number for each is < [E : f(a)] by induction. So the number is
<[E:F. O

Example 4.4. We can extend ¢ : Q — R to ¢ : Q(v/2,v/3) — R in 4 ways. However, there
is only one way to embed Q(¥/2) — R because 2° — 2 = (z — V/2) - (deg(2)) in R[z].

Proposition 4.2. Let E/F be algebraic, and let 0 : E — E be an embedding fixing F'.
Then o is an isomorphism.

Proof. For any 8 € FE, let f be its minimal polynomial. The restriction to the finite set
of roots o : {roots of f in E} — {roots of f in E} is a bijection (as it is injective). So
B € im(o). O

15



5 Algebraic Closure

5.1 Algebraically closed fields

Definition 5.1. A polynomial splits in L[z] if it factors in L[z] as a product of linear
polynomials.

Definition 5.2. A field L is algebraically closed if every nonconstant polynomial in
L[z] has a root in L.

Proposition 5.1. If Liz| is algebraically closed, then every (nonconstant) poltnomial in
L[z] splits over L.

Corollary 5.1. If M is an algebraic extension of an algebraically closed field L, then
M= L.

Theorem 5.1 (fundamental theorem of algebra). C is algebraically closed.
Here is a proof that uses no algebra.

Proof. Let f € Clz] have no roots in C. Then 1/f is holomorphic on C. Moreover, 1/f is
bounded. So 1/f is constant by Liouville’s theorem. Thus, f is constant. O

Theorem 5.2. Let E/F be algebraic, and let ¢ : F' — M be a field embedding with M
algebraically closed. Then there exists a field embedding ® : E — M extending .

Proof. Let X = {(K,o0) : E/K/F,0 : K — M is an embedding extending ¢}. Then
(K,0) < (K',o') if K C K" and ¢'|x = o defines a partial order on X. Let |mcC be a
chain in X. Then L = {Jyxce K with 7 : L — M defined as 7| = o for each K € C is an
upper bound for C. By Zorn’s lemma, we have a maximal element (2, ®).

We want to show that = E. Let a € E, and let f € Q[z] be its minimal polynomial
flz) =31, a;x’, where n = deg(f). Define g := > | ®(a;)z" € M[z]. M is algebraically
closed, so g has a root 3 € M. So there exists ® : Q(a) — M with ®|q = ® and a + .
Then (Q(a), ®) > (Q, ®). So a € Q, as (Q, ®) is maximal. O

Proposition 5.2. The set of all algebraic elements over F in an extension E/F is a
subfield of E, the largest intermediate field that is algebraic over F.

Proof. Let M be the set of algebraic elements over F'in E. Let o, 3 € M. Then F(«, 3)/F
is finite, so it contains o — 8 and o/ if 5 # 0, and F (o, 5) C M. O

Corollary 5.2. The set Q of algebraic numbers in C is a subfield of C.

16



5.2 Algebraic closure

Definition 5.3. An algebraic closure of a field F' is an algebraic, algebraically closed
extension of F.

Proposition 5.3. Let K/E/F. Then K/F is algebraic if and only if K/E and E/F are
algebraic.

Proof. (<= ): Take a € K, and let f € E[z] be its minimal polynomial, f = Y1, a;z’,
where a; € E. Each of these a; is algebraic over F. Then F(ay,...,a,)(a) is finite over F,
so every element in it is algebraic over F, so « is algebraic over F'. O

Proposition 5.4. If F is a field and M/F is algebraically closed, then M contains a
unique algebraic closure of F, the maximal subfield F of M which is algebraic over F.

Proof. Suppose f € Flz], and look at E/F, generated by the coefficients of f. E/F is
finite. If &« € M is a foot of f, then E(«)/F is algebraic by the previous proposition, so «
is algebraic over F'. Then a € F. O

Corollary 5.3. Q is an algebraic closure of Q.

Example 5.1. E, = o2 Fpn is an algebraic closure of F,. This union makes sense
because Fr, Fe C Fyym, where m = lem(k, £).

Theorem 5.3. FEvery field F has an algebraic closure.

Proof. Let F be a field, Q =[] By where f runs over monic irreducible polynomials in
Flz] and Ry is a finite set with one element for each root of f in a splitting field. Then
F C Q because a is the unique root of © — a. Let X = {E/F algebraic : E C Q,«a € E}.
Such an o € Ry, where f is in the minimal polynomial of a. X # @, since F' € X.

Let C be a chain in X, and let K = Jgcc E C Q. Check yourself that K € X. So C
has an upper bound. By Zorn’s lemma, we have a maximal element F' € X. Since I’ € X,
it is algebraic. We claim that F is algebraically closed. Let f € F[z] and g € F[z] be
monic and irreducible with g | f. E = F[x]/(g) C Q as follows: if h € F[z] is monic and
irreducible with a root in E, then the distinct roots of h in E \ F inject into elements of
Ry \ F. By maximality, E = F. So F is algebraically closed. O

Proposition 5.5. If M, M’ are algebraic closures of F' then there exists an isomorphism
®: M — M fizing F.

Proof. We have an embedding F — M’. There exists a ® : M — M’ extending this
inclusion. It suffices to show that im(®) is algebraically closed. If & € M is a root of
f € F[z], it maps to a root of ®(«) of f in ®(M) C M’'. So ®(M) is algebraically closed,
and hence ®(M) = M. O
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6 Transcendental Extensions and Separability

6.1 Transcendental extensions

Definition 6.1. An extension K/F is purely transcendental if every o € K \ F is
transcendental over F'.

Proposition 6.1. F((t;)icr), where I is an indexing set, is purely transcendental over F'.

Proof. Here is the case of F(t)/F. Let a = f/g € F(t) = F, where f,g € FJt], and g # 0.
Then ag(x) ¢ Flz], but ag(x) € F(t)[x]. Then ag(z) # f(z) € Flz]. But f(zz) — ag(z)
has a root t, so t is algebraic over F'(«). But ¢ is transcendental over F', so o must be
transcendental over F'. Thus, F'(t)/F is purely transcendental.

For the case of F(t1,...,t,)/F, proceed by induction. For the general case, every
element in F((t;)ier) is in F(t1,...,t,) for some iy,...,i, € I. If it is not in F, it is
transcendental by the previous case. O

Proposition 6.2. Fvery field extension is a purely transcendental extension of an algebraic
extension.

Proof. Let K/F, and let E be the maximal algebraic extension of F' in K. If « € K is
algebraic over F, it is algebraic over F, so a € E. So K/FE is purely transcendental. O

Example 6.1. Let F be a field, and let F be an algebraic closure. Then F(t)/F is purely
transcendental. We can do it the other way around, as well. F(t)/F(t) is algebraic, while
F(t)/F is purely transcendental.

Definition 6.2. A subset S C K for K/F is algebraically independent over F' if for
all nonzero f € F[z1,...,x,| and distinct s1,...,8, €S, f(s1,...,8,) #0.

Here are some lemmas about algebraically independent sets. The proofs are the same
as the corresponding properties of linearly independent sets.

Lemma 6.1. Let S C K be algebraically independent over F'. Thent € K is transcendental
over F(S), where F(S) is the smallest subfield of K generated by S over F, if and only if
S U{t} is algebraically independent over F'.

Lemma 6.2. S C K is algebraically independent over F' if and only if every s € S 1is
transcendental over F(S '\ {s}).

Definition 6.3. A subset S of K is a transcendence basis for K/F if it is algebraically
independent over F' and if K/F(S) is algebraic.

Example 6.2. Let F(t)/F. {r} is a transcendence basis, and in fact, {t!/"} is a trascen-

dence basis for any n. However {tl/ 2 41/ 31 is not because it is not algebraically independent:
(t1/2)2 _ (t1/3)3‘
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The previous two lemmas imply the following lemma.
Lemma 6.3. Let S C K. The following are equivalent:
1. S is a trascnece basis for K/F.
2. S is a mazimal F-algebraically independent subset of K.
3. S is a minimal subset of K such that K is algebraic over F(S).

Proof. The first two statements are equivalent by the first lemma. The latter two state-
ments are equivalent by the second. O

Theorem 6.1. Every F-algebraiclly independent subset of K is contained in a transcen-
dence basis, and every S C K such that K/F(s) is algebraic contains a trascendence basis.

The proof is the same argument as the corresponding statement in linear algebra.

Corollary 6.1. FEvery field extension has a transcendence basis. In particular, there exists
an intermediate extension K/E/F such that K/E is algebraic and E/F is purely transen-
cental.

Proof. Take E = F(S), where S is a transcendence basis. O
Theorem 6.2. Any two transcendence bases of K/F have the same cardinality.
Again, the proof is the same as the corresponding proof in linear algebra.

Definition 6.4. The transcendence degree of K/F is the number of elements in a
transcendence bases if finite. Otherwise, K/F' has infinite transcendence degree.

6.2 Separability

Definition 6.5. Let f € F[z]. The multiplicity of a root a of F' in an algebraic closure
of F is the highest power m such that (z — )™ | f in F[z].

Example 6.3. The polynomial 2P —t = (z — t'/P)? in F,(t!/P)[z]. The multiplicity of '/
is p.

Lemma 6.4. The multiplicity of a root odes not depend on the choice of F and does not
depend on the choice of root if f is irreducible.

Corollary 6.2. The number of distinct roots in F of an irredudcible polynomial f € F|x]
divides deg(f).

Proof. Write f = Hle(m — ;). Then km = deg(f). O
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Definition 6.6. We say that f € F[x] is separable if every root of f has multiplicity 1.
An element a € F is separable if it is algebraic over F' and its minimal polynomial over
F is separable. An extension F/F' is separable if every a € E is separable over F.

Lemma 6.5. Let E/F be a field extension and o € E be algebraic over F. Then « is
separable over F if and only if F(«)/F.

Proof. If F(a)/F is separable, then a € F(a), so « is separable over F. Conversely,
suppose « is separable over F, and let 8 € F(«). The number of embeddings of F93 [ F
fixing F'is < [F(5) : F]. Equality holds iff  is separable over F'.

The number of embeddings F'(o) — F is [F(a) : F]. On the other hand, « is separable
over F(f3), so the number of embeddings F(a) — F extending the embedding F(8) — F
equals [F() : F(B)]. So the number of embeddings F(a) — F over F is the product of
the number of embeddings F(3) — F with the number of extensions of these embeddings
to F(a) — F. So the number of embeddings F(3) — F fixing F is

[F(a) : F]

) F(B)] L)L -
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7 Inseparability and Perfect Fields

7.1 Towers of separable extensions

Proposition 7.1. Let E/F be finite, and let Embg(E) be the set of embeddings ® : E — F
fizing F. Then |Embp(E)| divides [E : F|, with equality iff E/F is separable.

Proof. Let e = |Embp(FE)| and E = F(aq,...,q,). Let B, = F(aq,...,qai=1, and let ¢;
be the number of embeddings in Embp(FE; 1) extending an embedding in Embp(FE;). We
know that e; | [Fi+1 : E;] and we get equality iff E;y;/F; is separable. This is because
this is the number of distinct conjugates of «; over E; times the multiplicity (number of
conjugates times multiplicity is the degree of the polynomial). Now e =[], e;, so E/F
is separable.

If e = [E : F], take 8 € E. The number of conjugates of 8 € F is d = | Embgr(F(8))],
which divides [F(8) : F]. The number of extensions of any such embedding to E — F
divides ¢ = [E : F(B)]. Now ¢d = e = [E : F], sod = [F(B) : F], since d divides it and
c|[E: F(B)]. Then F(B)/F is separable. O

Proposition 7.2. If K/E/F are salgebraic, and K/E and K/F is separable, then K/F
is separable.

Proof. In the case of finite degree, this follows from the previous proposition. In general,
any « € K has minimal polynomial over E which has coefficients in a finite extension
E'JF. So E'(«)/E'/F is finite, E'(«)/E" and E'/F are separable. So, by the finite case,
a is separable over F'. This is true for all o € K, so K/F is separable. O

7.2 Purely inseparable extensions and degrees of separability and insep-
arability

Definition 7.1. An extension E/F is purely inseparable if every a € E'\ F is insepara-
ble. Equivalently, E/F is separable it has no nontrivial intermediate separable extensions
over F.

Example 7.1. F,(z)/F,(2?) is purely inseparable because it has degree p and because the
minimal polynomial of z is tP — 2P = (t — x)P.

Corollary 7.1. The set of all separable elements in an extension K/F (call it E) is a
field, and K/E is purely inseparable.

Definition 7.2. Suppose K/F is finite, and F is a maximal separable subextension. Then
the degree of separability of K/F is [K : F|s = [E : F]. The degree of inseparability
if [K:F];=[K:S5].

Lemma 7.1. Let E/F is algebraic, f € E[z] be monic, and m > 1 such that f™ € F|[z].
Then either m =0 in F or f € Flz].
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Proof. Let f = 3" ;a;z" be monic, and suppose that f ¢ F[z]. Let i < n — 1 be maximal
such that a; ¢ F. Let ¢ be the coefficient of (m=n+iip ™ This is not in F, since ¢ is a

sum of terms all in F' (involving only a; with j > i and 1 term coming from a;a™ ! = a;).

So ¢ — ma; € F, which means a; € F or m =0 in F. But a; ¢ F. O

Proposition 7.3. Let char(F) = p. If E/F is purely inseparable and o € E, then there
exists a minimal k > 0 such that of € F, and the minimal polynomial of « is 2P — aP"

Proof. Let a € E '\ F have minimal polynomial f = [[%,(z — ;)™ € Flz]. Of m > 1,
then f = ¢™ where g = H;i:l(x — ;). Then m = p¥t, where p { ¢t ,and k > 1 by the
lemma. Then f = (¢?*)! € F[z]. So the lemma forces t = 1 since p { t. Letting a; = o

we get f = H?Zl(xpk —a;). Then f = h(zP"), where h = H?Zl(:n —a;) € Flz]. This is a

separable polynomial, so F'(a;)/F is separable for each i. Since E/F is purely inseparable,
k
each a; € F'. Since F is irreducible, we get d = 1. So f = 2 — o, O

Corollary 7.2. If E/F is finite and char(F) = p, then [E/F); is a power of p.
Proposition 7.4. [K : F]s = |Embp(K)|.

Corollary 7.3. Degrees of separability and inseparability are multiplicative in extensions.

7.3 Perfect fields
Definition 7.3. A field is perfect if every algebraic extension of it is separable.

Example 7.2. F, is perfect. Finite extensions are F,», which is generated by the roots of
xP" — x, which has p" distinct roots. So these extensions are separable.

Theorem 7.1. Fvery field of characteristic 0 is perfect.

Proof. Let char(F) = 0. Then every irreducible monic polynomial is f = H?:1($ —ao)™ e
Flz]. Then f = g™, where g € Flx]. So g € F[z] by the lemma. Since f is irreducible,
m = 1. 0

7.4 The primitive element theorem

Definition 7.4. An extension E/F is simple if £ = F(«) with a € E. Here, a is called
a primitive element for E/F'.

Theorem 7.2 (primitive element theorem). Every finite separable extension is simple.

Proof. If F =T, then Fyn, where Fy(&), where ¢ is the primitive (¢" —1)-th root of 1. Now
we may assume that F' is an infinite field. It suffices to show that any F(«, 8)/F (with a, 8
algebraic) is simple. Look at v := a+¢f for ¢ € F'\ {0}. Since F is infinite, we can choose
c# (o —a)/(B — B), where o is a conjugate of o and same for 3. Then v # o' + ¢f’ for
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all such o/, 8’. Let f be the minimal polynomial of «, and let h(z) = f(y — cx) € F(v)[x].
Now h(B) = f(a) = 0. Then h does not have any other 3" as a root. We will finish this
next time. O
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8 Normal Extensions, (zalois Extensions, and Galois Groups

8.1 The primitive element theorem

Let’s complete the proof from last time.
Theorem 8.1 (primitive element theorem). Every finite, separable extension is simple.

Proof. If F =T, then Fgn, where F, (&), where £ is the primitive (¢" —1)-th root of 1. Now
we may assume that F' is an infinite field. It suffices to show that any F(«, 8)/F (with a, 8
algebraic) is simple. Look at v := a+¢f for ¢ € F'\ {0}. Since F is infinite, we can choose
c# (o —a)/(B — ), where o is a conjugate of o and same for 5. Then v # o' + ¢f’ for
all such o/, 8’. Let f be the minimal polynomial of «, and let h(z) = f(y — cx) € F(vy)[x].
Now h(B) = f(a) =0, and h € F(y)[z]. But h(8") = f(y — ¢B) # 0 for all 3’ conjugate
(but not equal) to . If g € F[x] is the minimal polynomial of 3, then since it and h share
just one root, 3, in F(v), the minimal polynomial of 5 is x — 8. Then 8 € F(v), which
gives a € F(v). So F(v) = F(a, B). O

Remark 8.1. Where does separability come into play during the proof? We used that g
is separable to show that g(z) # (z — B)* for k > 1.
8.2 Normal extensions

Definition 8.1. An algebraic extension F/F' is normal if it is the splitting field of some
set of polynomials in F[x].

Example 8.1. Q(+/2)/Q is not normal. The minimal polynomial of v/2, * — 2, has roots
not in Q(+/2). However, the extension Q(v/2,7)/Q is normal.

Lemma 8.1. If K/F is normal, then so is K/E for any intermediate E.

Theorem 8.2. An algebraic extension E/F is normal if and only if every embedding
®:E — F (where F C E) fizing F satisfies ®(FE) = E.

Proof. Let E/F be normal, and say it is the splitting field of S C F[x]. Suppose ® : E — F
is an embedding fixing F'. Let a € E. Then ®(a) = 3, where 3 is conjugate to a over F.
So B € E, s0o ®(E) C E. Then ®(E) = E.

Suppose that ®(F) = E for all ®, and let a € E have minimal polynomial f. Given
B € F that is a root of f, there exists ® such that ®(a) = 3. Therefore, 8 € E. So in
particular, E is the splitting field of all minimal polynomials in F[z] with a root in E. [

Corollary 8.1. IF E/F is normal and f € F[z]| has a root in E, then f splits in E.

Proposition 8.1. If E, K C F are normal over F, then so is the compositum EK.
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Proof. E is the splitting field of S. K is the splitting field of T. Then EFK is the splitting
field of SUT. O

Here is an alternative proof.

Proof. If ¢ € Embp(EK), then since ¢(E) = F and ¢(K) = K, o(EK) = EK. O

8.3 Galois groups and extensions

Definition 8.2. The Galois group Gal(E/F') of a normal extension E/F is the group of
field automorphisms F — F fixing F.

Sometimes, we may write Gal(E/F) = Autp(E) C Aut(FE).
Remark 8.2. |Gal(E/F)| = [E : F|,. This equals the degree when E/F is separable.
Definition 8.3. An extensions E/F is Galois if it is normal and separable.
Remark 8.3. If E/F is finite, then E/F is Galois iff it is normal and | Gal(E/F)| = [E : F].

Example 8.2. Last time, we showed that Fy» /F, is separable. Fy» is the splitting field of
29" — x, which is separable, so F;n is Galois. The Frobenius element ¢, € Gal(F . /F,)
is defined by ¢,4(a) = a?. This is a field homomorphism; it is an additive homomorphism
because we are in characteristic g. What are the other elements of Gal(Fy» /F,)?

Proposition 8.2. Gal(Fy /[F,) = (p,) = Z/nZ.

Proof. The automorphism go'; () = a?" fixes Fqn iff n | k. So its order is n. The Galois
group has order n, so this must be a cyclic group. ]

Example 8.3. F,(t'/7)/F,(t) is purely inseparable. If o € Autp, (1) (F,(t'/7)), then o (t) = t.
So o(t'/P)P = g(t) = t. Then o(t'/P) = t'/P. That is, Autr, () (F, (/7)) is trivial.

Example 8.4. Recall that the cyclotomic polynomial ®,, is irreducible. Then [Q((,) :
Q] = ¢(n). Let K be a field of characteristic t n. Define the n-th cyclotomic character
Xn @ Gal(K(¢,)/K) — (Z/nZ)* sending o — a (mod n), where o(¢,) = ¢%. We can also

say it like this: o((,) = Cn"(g). This is a homomorphism because

X0 = 0 (r()) = (7)) = (G = i),
This is injective because Y, is determined on ¢ by what power o raises (, to.
Proposition 8.3. The map xy, : Gal(Q((,)/Q) — (Z/nZ)* is an isomorphism.

Proof. The Galois group has order ¢(n), the same as the order of (Z/nZ)*. We already
showed that x,, is injective. O
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8.4 Fixed fields

Definition 8.4. The fixed field of a field E by a subgroup G of Aut(FE) is the field
E¢={acE:0-a=aVoeG}.

Proposition 8.4. If if K/F is Galois, then KG(K/F) — |,

Proof. (D): F is fixed by every o € Gal(K/F).

(C): If a € KGUE/F) "then for all o € Gal(K/F), o - a = o. But this means that « is
the only root of its minimal polynomial in K by normality. Separability gives us that the
minimal polynomial is x — a. Therefore, a € F'. O

Let K/F is finite and Galois, let E' be intermediate, and let o € Gal(K/F). We can
consider the restriction o|g : F — o(FE). If E is normal over F, then this gives a map
Gal(K/F) — Gal(E/F).

Lemma 8.2. Let K/F be Galois and E be intermediate. The restriction map resg :
Gal(K/F)/ Gal(K/E) — Embp(FE) is a bijection. If E/F is Galois, then this is an iso-
morphism of groups.

Proof is left as an exercise.!

"Why, Professor Sharifi? Why?
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9 The Fundamental Theorem of (Galois Theory

9.1 Restriction of automorphisms and the Galois group over a fixed field

Here, assume all extensions K/F will lie in F.

Proposition 9.1. If K/F is Galois and E is intermediate, then there exits a bijection of
left Gal(K/F')-sets resp : Gal(K/F)/ Gal(K/E) — Embp(E) sending o0 Gal(K/E) — o|g.
Moreover, E/F is Galois if and only if Gal(K/E) is normal in Gal(K/F), in which case
resg is an isomorphism of groups.

Proof. If 0 € Gal(K/F) and 7 € Gal(K/F), then

oT|lg =0lp <= o;(a)=0(a)Va € E
<~ 71(a) =aVaeFE
< 7€ Gal(K/E).

To show that this is onto, every ¢ € Embg(FE) lifts to o : K — F, but this takes values
in K since K/F is normal. So o € Gal(K/F). If |rho € Gal(K/F), then

resp(po Gal(K/E)) = po|g = poo|g = poresp(o Gal(K/E)).

If E/F is Galois, then Gal(K/F) — Gal(E/F) sending ¢ — o|g has kernel Gal(K/FE), so
it is normal.

Conversely, if Gal(K/E) < Gal(K/F), take ¢ € Embp(F), and ¢ € Gal(K/F) lifting
¢. Then for all 7 € Gal(K/FE), 0~ '70o|g = 1. By normality, 70|E = o|g. So o(E) is fixed
by 7. So o(E) C E, the fixed field of 7. So ¢(F) = E, so E/F is Galois. O

Proposition 9.2. Let K/F be finite and Galois, and let H < Gal(K/F'). Then the Galois
group Gal(K/K™) = H.

Proof. H fixes K| so H < Gal(K/K"™). K/K" is separable, so by the primitive element
theorem, there exists § € K such that K = K#(0). Then f = [[,.y(z — o(0)) € K[z].
The minimal polynomial of 6 over K divides f, so [K : K] < deg(f) = |H|. This forces
H = Gal(K/K*H). O

9.2 The Galois correspondence

Theorem 9.1 (Fundamental theorem of Galois theory). Let K/F be finite, Galois. There
are inclusion-reversing inverse bijections ¢ : {FE : K/E/F} — {H : H < Gal(K/F)} and
0:{H:H<Gal(K/F)} = {E: K/E/F} such that y(E) = Gal(K/E), and 6(H) = KH.
For such E/H, |[K : E] = |Gal(K/E)|, and |H| = [K : K™]. These restrict to bijections
between normal extensions of K and normal subgroups of Gal(K/F). If E/F is normal,
we have the bijection Gal(K/F)/ Gal(K/E) — Embp(E), sending o Gal(K/E) — o|g.
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Proof. We have proved almost all the statements. We verify
Y(O(H)) = (KT = Gal(K/K) = H,
0(y(E)) = 0(Gal(K/E)) = KSK/B) = | -

Example 9.1. The splitting field of z¢ —2 over Q is K = Q(v/2,4). The polynomial z* —2
is irreducible over Q(i). There exists 7 € Gal(K/Q(i)) & Z/4Z with 7(+/2) = iv/2; this
generates Gal(K/Q(i)). The Gal(K/Q(v/2)) > o such that (i) = —i and o(v/2) = V2.
We can check that oro~1(v/2) = —iv/2 = 771(v/2). So o70~! = 771, Then Gal(K/Q) =
7JA7 x 7,)27. = Dy.

Here is a diagram of some of the intermediate fields.

Proposition 9.3. Let Kbe finite and Galois over F, and let E/F be algebraic. Then the
map resg : Gal(EK/FE) — Gal(K/K N E) sending o — 0|k is an isomorphism.

Proof. Let 0 € Gal(EK/FE). Then o fixes E, so 0|k fixes KN E. If o|g = 1, then o dixes
FE and K, so o fixes EK. So 0 = 1. Then resg is injective.

Let H be the image. Then K = KG(EK/E) — KN E. So H = Gal(K/K%) =
Gal(K/K N E). So resk is onto. O

Proposition 9.4. Let K/F be finite, Galois of degree n. Then Gal(K/F') embeds into Sy,.

Proof. By the primitive element theorem, K = G(0), so Gal(K/F) permutes the roots of
the conjugates of 6, a set with n elements. This action is faithful and transitive. O
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10 Profinite Groups and Infinite Galois Theory

10.1 Galois groups of infinite field extensions

Example 10.1. Consider Gal(F,/F,). It maps to each Gal(Fyn/F,), so Gal(F,/F,) —
@Gal(lﬁ‘pn JF,). This is injective because an element of Gal(F,/F,) is determined by
what it does to F,n for all n. It is surjective because we can keep lifting elements in
Gal(Fpn Fp) .

This example had nothing to do with F,. In fact, for any Galois extension K/F,

Gal(K/F)=  lm  Gal(E/F).
ECK
E/F finite, Galois

Then

A~

Jim @Z/nZ =17,

n n
the Priifer ring. Z < 7Z says that (p,) < Gal(F,,F,). Then ﬁ;@m = F,. So Gal(K, K)
can be bigger than H.

Suppose we have an inverse system (G;, ¢; ;) of groups, where [ is a directed set. That
is, given 7, j € I, there exists some k such that k <ior k < j, and ¢;; : G; — G;. Recall
that the inverse limit gnz Gi C L Giis l&nZ Gi = {(9i)ier : ¢i,j(gi) = g; Vi, j}. Then the
Galois group will be G = r&liel G;. If

I

EFE'

E E'
F
then Gal(EE'/F) surjects onto both Gal(E/F) and Gal(E'/F).

10.2 Topological and profinite groups

Definition 10.1. A topological group G is a group with a topology such that the
multiplication map G x G — G and inversion map G — G sending (z,y) — zy and
x — 2~ ! are continuous.

Then [],c; has the product topology, which is generated by the base

HUjX H Xi,

jeJ €I\J
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where U; C X is open.
Then G = @z G; has the subspace topology induced from the product topology. G is
a topological group with respect to this topology (exercise).

Definition 10.2. A profinite group is an inverse limit of finite groups G = @Gi
endowed with the above topology, the profinite topology relative to (G;, ¢; ;)

Example 10.2. Let Z = @Z/nZ. Then =, : Z — Z/nZ is continuous, and nZ =

ker(m,) = w71 ({0}) is open. Then nZ is a base of open neighborhoods of 0. Then {a +nZ}
is a basis of open neigpborhoods of a € Z. Since 7Z surjects onto Z/nZ, we can find a, € Z
such that a, — a + nZ for all n. So Z is dense in Z; that is, its closure is Z.

Theorem 10.1. A topological group G is profinite if and only if it is compact, Hausdorff,
and totally disconnected (every connected component is a point).

Let’s assume the following fact from topology.

Proposition 10.1. A compact, Hausdorff space is totally disconnected if and only if it has
a base of clopen neighborhoods.

We will prove one direction of the theorem.

Proof. Assume G is profinite. Products of compact, Hausdorff spaces are compact, Haus-
dorff. Closed subsets of Hausdorff spaces are compact, and subsets of Hausdorff spaces are
Hausdorff. To show that G is closed, note that

G = (M (gi)ier : $i5(9:) = 95}-
®i;
Now let U; be open for all j € J with J finite. Then

HUjXHGi ﬂ UJXHGi

Jjed iel\J jeJ i#j
= U Uj X HGZ
Jjed i#]

=Jus x[]G:

jeJ i#]

C

So []; G; is totally disconnected. So G = 1‘&16‘1 is totally disconnected. O]

Let m; : G — G;. Then ker(m;) = ([]; G;) x {1}. Then [L;cp ; Gi X [;e,{1} is a
basis of neighborhoods of 1. Then ﬂl&nl Gi = jes ker(m;) is an open subgroup of T&lGi
with finite index.
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Proposition 10.2. In profinite groups, subgroups are open if and only if they are closed
and have finite index.

Proof. (<= ): If H < G is closed of finite index, then {gH : gH # H} C G/H is a finite
set. Each gH is closed, so UgH;éH gH = H°¢. So H is open. O

Definition 10.3. The Krull topology on Gal(K/F) is the profinite topology for

Gal(K/F) = Ehél}l{ Gal(E/F).
E/F finite

Definition 10.4. If G is a group, the profinite completion is

G = m N.
N<G
finite index

This gives a functor from the category of groups to the category of topological groups.

10.3 The fundamental theorem of Galois theory for infinite degree ex-
tensions

Theorem 10.2 (fundamental theorem of Galois theory). Let K/F be Galois. There are in-
verse, inclusion reversing correspondences {E : K/E/F} — {H : H < Gal(K/F), H closed}
sending E + Gal(K/E) and H — K*™. Respective correspondences exist for finite or nor-
mal extensions to open or normal subgroups. If E/F is normal, then Gal(K/F)/ Gal(K/E) =
Gal(E/F), where this is a topological isomorphism.

Example 10.3. The absolute Galois group of Q is Gg = Gal(Q/Q).
Example 10.4. The absolute Galois group of R is Gr = Z/27Z.

Example 10.5. The absolute Galois group of I, is 7 = II Z,, ;where Z;, = @n Z/p" L.

p prime

Theorem 10.3 (Kronecker-Weber). Let pu, be a primitive n-th root of unity, and let
Q®»® =U, Q(un). Then Goaw = Gal(Q*/Q) = 7~
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11 Tensor Products
11.1 Construction, universal property, and examples
Let A be a ring, let M be a right A-module, and let N be a left A-module.

Definition 11.1. The tensor product of M and N over A, denoted M ®4 N, is the
quotient of ZM*N = @(m n)EMx N Z(m,n) by the Z-submodule generated by

1. (m+m/;n)— (m,n) — (m',n)
2. (m,n' +n)—(m,n) — (m,n’)
3. (ma,n) — (m,an)

for all m,m’ € M, n,n’ € N, and a € A. The image of (m,n) in M ®4 N is denoted m ®@n
and is called a simple tensor.

Example 11.1. How do simple tensors work? Let k € Z.
kEm@n)=m®@n)+---+(men)=m+---+m)® = (km) @n =m® (kn).

Similarly,
(~1)(m@n) = (-m) @ n.

0®nNn=0=m®AO0.

Proposition 11.1 (tensor product universal property). Let L be an abelian group and
¢: M x N — L be such that

1. p(m+m/,n) = p(m,n) + ¢(m',n) (left biadditivity)
2. ¢(m,n+n') = p(m,n) + ¢(m,n’) (right biadditivity)
3. ¢p(ma,n) = ¢(m,an) (A-balanced).

There exists a unique homomorphism ® : M ® 4 N — L such that ®(m @ n) = ¢(m,n) for
allme M andn € N.

MXNL%L

.
-
-
.
P
-
. P
-

M ®a N
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Proof. M ®a N = ZM>*N /I for the ideal generated by the relations. ZM*V is free over Z,
so there exists a unique ¢ : ZM®N — [ given by p((m,n)) = ¢(m,n). We get

ZMXN : L

.
-
-
-
P
-
Pl
-

M ®a N

whrer the map ZM®N — M ®4 N is surjective. This uniquely determined ® if it exists;
i.e. ®(I) = 0. We can verify, for example, that

o((m + m’,n) — (m,n) — (m,n)) = ¢(m+m;,n) — p(m,n) — ng(m',n) =0. O

Here is a special case. Let A be an R-algebra, where R is commutative. Let ¢ : R —

Z(A), the center of A. M is an R-A bimodule, where rm = mr. Recall that an A-B
bimodule is a left A-module and a right B module such that (am)b = a(mb) fir all a € A,
m € M and b € B. We can define

rtm®n)=(rm)@n=(mr)®@n=m®e (rn)

to give M ®4 N an R-module structure. Another way to do this would be to deinfe
M ®4 N as RM*N | quotiented by the R-submodule generated by the same relations, plus
the relation r(m,n) — (rm,n).

What is the universal property saying?

Homp_1od(M ®r N, L) = Hom(M x N, L),
where the right side is homomorphisms that are R-bilinear and A-balanced.

Example 11.2. Let K be a field. Then K™ ® g K™ is an mn-dimensional K vector space,
generated by e; ® e;, where {e;} and {e;} form a basis for K™ and K", respectively:

m m m
K™@ K" = <@K> R K"= QKo K") =PE" = K™,
=1 =1

i=1
Example 11.3. Z/mZ ®z Z/nZ = Z/(m,n)Z. We have the biadditive, Z-balanced map
Z)mZ @y L/nZ — 7./ (m,n)Z sending (a,b) — ab, so there exists a unique map Z/mZ ®y,
Z/nZ — 7Z./(m,n)Z sending a ® b — ab. This is surjective. Let a,b € Z. Then m(a ® b) =
ma®b=0, and n(a®b) =a®nb=0. Also, a ® b = ab(1 ® 1), which means that this
group is cyclic by has order dividing m and dividing n. So the map is injective.

Example 11.4. A4 N = N as let A-modules.

More generally, let A, B, C be rings, let A be an A-B bimodule, and let N be a B-C
bimodule. Then M ®g N is an A-C bimodule.

a(m®mn) = (am) @ n, m® (nc).
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11.2 Properties of the tensor product
Proposition 11.2. M®4 = N Q00 M.

Proof. We have the map (m,n) — m ® n which is bilinear and A-balanced. It induces a
unique map M ®4 N — N ® g0p0 M. [

Proposition 11.3. Let L be a right A-module, let M be an A-B bimodule, and let N be
a left B-module. Then (L ®4 M)® BN = L®4 (M ®p N).

Proof. We can verify this using the universal property, as before. Alternatively, we can
define the object L ® 4 M ®p N as we defined the tensor product and show that (L ®
M)® BN and L ®4 (M ®p N) are isomorphic to it. O

Proposition 11.4. (,.; M;) @4 N = @, ;(M; ® AN).

Proposition 11.5. Let M be a left A-module, and let I C A be a 2-sided ideal. Then
AJTA®4 M = M/IM as A-modules.

Proof. Define a map ¢ : A/IAx M — M/IM such that ¢(a,m) = am + IM. This is
well-defined because if b € I, then ¢(b,m) = bm + IM = 0. This satisfies the properties
we need, so there exists a homomorphism ® : A/I ® 4 M — M/IM of A-modules. This
homomorphism is surjective. We can define an inverse M/IM — A/IA ® 4 M sending
m + IM +— 1 ® m; this is well-defined because for b; € I and m; € M,

> > > )=>_( g )
Check that this is the inverse of ®. O

We can also take tensor products of R-algebras A and B to get and R-algebra A®Qpr B,
where (a ®b) - (d/ @) = ad’ @bl
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12 Tensor Products of Algebras and Homomorphism Groups

12.1 Tensor products of algebras

Let A, B,C be R-algebras, where R is a commutative ring. Let M and N be R-balanced
A-B and B-C bimodules, respectively.

Definition 12.1. An R-balanced bimodule M is a module such that rm = rm for all
re R,me M.

This is equivalent to M being a A ® g B°®-module. Then M ®p N becomes an R-
balanced A-C bimodule:

a(m®mn) = am @ n, (m®n)c=m® nc.

We can also take tensor products of R-algebras, to get an R-algebra A ® p B. We can
define this by
(a®b) (@) =ad @ bb.

Proposition 12.1. Multiplication is well-defined.

Proof. We want to construct A x B — Endr(A ®r B) sending (a,b) — ¢pup = (@' @V —
aa’ ® bb'"). To show that ¢, is well defined, we want a map A x B — A ®g B sending
(a',b') — ad’ @ bb'. By the universal property of the tensor product, we get a unique map
A®r B — A®g B, which we can set to be ¢ p.

Now we want to show that our original map is bilinear. Check that

(Tal + ag, b) = ©Oraitaz,b = TPar,b T TPay-

By the universal property, we get a map A®QrB — Endr(A®pB) sending a®b — (a’' @b —
aa’ @bb'). So then we get a map AQr X A®RrB — A®p B sending (a®b, a; Q') — aa’ Qbb'.
So the operation is well-defined. O

Example 12.1. Let R be a commutative ring. Then R[z] ® g R]y] = R[z,y| by specifying
(2%, y7) + 2’y and extending this map to be bilinear. This map is surjective because we
get every monomial in R[z,y]. Since R[x,y] is free on the monomials z'y’, we can define
an inverse map defined by z'y/ — 2’ ® y7.

Example 12.2. Let G be a group. The R-group ring of G, R[G], is the set of sums
> 9eG g lg], where a4 € R and a4 = 0 for all but finitely many g. We can define multipli-
cation on this by extending the multiplication on monomials defined by [g] - [h] = [gh].
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12.2 Homomorphism groups

Example 12.3. Let M, N be R-modules. Then Hompg (M, N) is an R-module: Let ¢, €
Hompg(M, N). Then we can define (ry)(m) := ¢(rm) = rp(m) and (¢ +1)(m) = o(m) +
©(m). These are still R-module homomorphisms:

(r)(m)(sm) = p(rsm) = p(srm) = sp(rm) = s(re)(m)
for r,s € R.

Remark 12.1. If M, N are A-modules, then Hom4 (M, N) is an R-module but not an
A-module.

Example 12.4. Let M be an R-balanced A-B bimodule, and let N be an R-balanced A-C
bimodule. Then Hom 4 (M, N) is a B-C bimodule by defining

(bp)(m) := @(mb),  (pc)(m) = @(m)c.
Check that everything is balanced.

Homy4(+,-) : A®pg B°P-mod — B x A ®p B°®-mod — B ®r C°P-mod is a bifunctor.

Hom4 (M [[ Vi) = [ Homa (M, N;).
i€l el

Homu (@D M;, N) = [ [ Homa(M;, N).
iel iel
Definition 12.2. If F' is a field, and V is an F' vector space, we can define the dual
vector space, V* = Homp(V, F).

12.3 Dual vector spaces

If we have amap f: V — W, we get a map f*: W* — V* defined by f*(¢)(v) = po f(v),
so V +— V* is a contravariant functor from F-vector spaces to F-vector spaces.
If V has basis vy, ..., vy, then there is a dual basis ¢1, ..., ¢, of V* given by

1 i=j
i(vj) =65 =
vi(vj) »J {O i .

So V= V*if V is finite dimensional. This is not the case if V is infinite-dimensional.
The functor V' +— V** covariant. We get ® : V- — V** given by ®(v)(f) = f(v). Check
that ® is F-linear.

Proposition 12.2. & : V — V** is injective.
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Proof. If ®(v) = 0, then f(v) = 0 for all f € V*; if v # 0, extend v to a basis B. Then
there exists f, € V* such that f,(v) =1 and f,(w) =0 for all w € B with w # v. This is
a contradiction. O

However, ® is not always an isomorphism. If V' = @, ;, then V' = Hom (P, ;
[Lic; Hom(F, F') = [[,c; F, which is bigger than V. So V** will be even bigger.

F,F)=

Proposition 12.3. If W is finite dimensional over F', then Homp(V,W) Z V* @p W via
fRwe (v f(v)w).

Proof. W = @7, Fw;. Then

V'er@PF=2@ Vv erF=2@ V"= Hom(V,F) = Hom(V, P F).
=1 =1 =1 =1

=1

This isomorphism is precisely the map you get from composing these isomorphisms. O

12.4 Adjointness of Hom and ®

Theorem 12.1. Let A, B,C be R-algebras, and let M, N, L be R-balanced A-B, B-C, and
A-C bimodules, respectively. Then Homa(M ®p N, L) = Homp(N,Homu4 (M, L)) as right
C-modules. Moreover, these are natural in M, N, L. In fact, we havety; : BOrC°P -mod —
A ®pr C°P-mod

N — M®rN

J)\ JridM ®RA

N —— M®gN'

and hpr : AQrC°P-mod — B®rC°P-mod such that Homx (tM(N), L) = Homp(N, hyr(L))
is natural in N and L; i.e. tyr is left adjoint to hyy.

We will prove this next time.
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13 Hom-® Adjunction, Tensor Powers, and Graded Algebras

13.1 Adjunction of Hom and ®

Theorem 13.1. Let A, B,C be R-algebras, and let M, N, L be R-balanced A-B, B-C, and
A-C bimodules, respectively. Then Homy(M ®p N, L) = Homp(N,Homy(M, L)) as right
C-modules. Moreover, these are natural in M, N, L. In fact, we have tp; : BRrC°P -mod —
A ®p C°P-mod

N — M®rN

JA J/idl\l(@R)\
N —— M ®grN'

and hps : AQrC°P-mod — B®rC°P-mod such that Homx (tM(N), L) = Homp(N, hyr(L))
1s natural in N and L; i.e. tpr is left adjoint to hyy.

Remark 13.1. This is the most general version, but you can safely forget C' to get a more
readable version of this theorem.

Proof. Let
p = (n— (m— p(memn))).

Yn
This is a homomorphism of abelian groups. Define 1, : M — L be 1,(m) = m ® n. Then

Yn(am) = ¢n((am) @ n) = ay(m @ n) = apn(m),
so Y, € Homy (M, L). Now look at n + 1),,. Then
(bhn)(m) = Pp(mb) = mb@n =m & bn = Py, (m),

so (n +— 1¢y) € Homp(N,Hom (M, L)). Showing that our map is a map of C°P-mods is
left as an exercise.
Let’s find an inverse. Take 6 € Homp(N, Hom(M, L)), and send

0 — (m®n— 0(n)(m)).

Then
a(m®n =am®@n+— 0(n)(am) = ab(n)(m),

so this is a map of A-modules. Also, (m,n) — 6(n)(m) gives a map M x N — L that is
left A-linear, B-balanced, and right C-linear (check this). So M ® g N — L is a map of
A®pRC°P-mods. To show that these are inverse maps, let ¢ — 6, where (n)(m) = p(m®n).
Then

O~ (men—0n)(m)=pmen)).

©
Check that the other composition works out. O
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13.2 Tensor powers and graded algebras
Let M be an R-module, where R is a commutative ring.
Definition 13.1. The k-th tensor power of M over R is M®* = M @r M @p---Qp M.

This satisfies the universal property for multilinear maps:

MxMx-‘-xMﬁL

|-

MIrMRr--Qr M

Definition 13.2. A graded ring A = @7 4; is ring consisting of a sequence of abelian
groups A; such that

1. The restriction of +: A x A — A to A; x A; is the operation on A;
2. The restriction of - : A x A — A to A; x A; lands in A;1; (so Ap is a ring).
Here, gr¥(A) := A}, is called the k-th graded piece.

To check that the direct sum of abelian groups together with these maps forms a graded
ring, we need these to be the same:

(Al X AJ) X Ak — Ai+j X Ak — Ai+k+k;
Ai X (Aj X Ak) — Al X Aj+k — Ai+j+k-

Definition 13.3. A graded R-algebra is a graded ring with the A; R-algebras, with a
map R — Z(Ap) such that R x A; — A; and A; x R — A; are the same, and such that
A; x Aj — Ay is R-bilinear.

Define o
T(M) = P M*,
k=0
where we have the map M®* x M® — MOKE+) given by
(M1 ® - @mg) - (M@ @m)) =m1 ® M @M, ® - - ® M.
Then this is a graded R-algebra.
Example 13.1. Let R be a commutative ring. Then

T(R) = P R = Rlz],
k=0

where the k-th graded piece has basis element 1 — z¥.
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Example 13.2. Let R be a commutative ring. What is T(R%") = T(Rz1 & - - & Rxy,)?
The k-th graded piece is generated by z;, ® --- ® x;,. However, this is not R[z1,...,xy].
Notice that z; ® z; # x; ® z;, so R¥" ®@p R%" = R®" . So

T(R®™) = R{x1,...,2),
the noncommutative polynomial ring in n variables over R.

What is the universal property of T7 If ¢ : M — A is a map of A modules, where A is
an R-algebra, then there exists a unique T'(¢) : T'(M) — A such that

M L; L
l " T(p)

T(M)

because T'(¢)(m1 & - @ my) = p(m1) @ - -+ ® p(m;) determines T'(¢).
Let I={m®n—-—n®m:m,n € M}. Then

I=e(1)
k=0

where gr*(I) := I Ngr®(T(M)). Then I is a graded ideal. If A is a graded R-algebra and
I is a graded ideal of A, then

A/Iw@gr )/ er* (1)

is a graded ring.
Definition 13.4. The symmetric algebra is S(M) =T(M)/I.

In the quotient,
m1@mg ®m3=m3Qm QQme=m1 Qm3Qmy =

Example 13.3. S(R®") = Rx1,...,Ty,)].
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14 Symmetric Powers, Exterior Powers, and Determinants

14.1 Symmetric algebras and powers
Let A be a graded R-algebra.

Definition 14.1. A homogeneous ideal I of A is an ideal such that I = @3>, gr* (1),
where gr¥(I) = I N grf(A).

Lemma 14.1. An ideal is homogeneous if and only if it has a set of generators, each of
which lies in some gr¥(A).

Example 14.1. Let I = (23 — y?) C A = R[z,y|, which is graded by degree. This is not
homogeneous, so A/I is not graded.

Let M be an R-module.
Definition 14.2. The tensor module is 7'(m) = @7, M©*.

Definition 14.3. The symmetric algebra is S(M) = T(M)/I, where I is the ideal
generated by m @ n — n ® m for all m,n € M. We call the graded pieces Symm* (M) =
g (S(M)).

Example 14.2. S(R®") = R[x1,...,x,], and Symm*(R®") is the set of homogenerous
polynomials of degree k in x1,...,x,.

SymmF (M) satisfies a universal property.

Proposition 14.1. For any ¢ : M* — L which is R-multilinear and symmetric in its
variables, there is a unique U such that

Symm* (M)

If f : M — N is a morphism of R-modules, then Symm*(f) : Symm*(M) — Symm*(N)
sends m1 @ - - @ mg — Y(my) @ - -+ R Y(my).
14.2 Exterior algebras and powers

To get antisymmetric instead of symmetric we could try the ideal generated by the m ®
n+n®m. If n =m, we get that 2m ® m is in the ideal, but m ® m is not necessarily in
the ideal. But we want ¢)(m,m, m,...) = 0. Instead take,

J={m®@m:me M}).
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Then
Joa(m+n)®@(m+n)—mOm-n@n=men+nem,

so we get all the relations we want.

Definition 14.4. The exterior algebra on an R-module M is A(M) = T(M)/J =
Do /\k(M) /\k(M) is called the k-th extenior product of M.

The k-th exterior product of M is universal for R-bilinear, alternating mpas in k-
variables: ¥(...,m,m,...) =0 for all m. We write the elements as

k
mA---Amy € /\(M)
Here are some properties:
1. miAmMmaAmg=—mi AmgAmg=m3Ami Amg=---
2. AmAmA---=0
A generalization of the first property is the following,
Lemma 14.2. m,q) A -+ A Mgy = (sign(o))ma A --- Amg.

/\k(REB") is spanned by e;; A --- Ae;,, where 21,...,e, is the standard basis of R®",
and i1,...,0; € {1,...,n}. In fact, this is spanned by e;; A --- Ae;,, where i1,...,7 are
distinct, or equivalently, i1 < - -+ < ig.

Theorem 14.1. A*(R®") is free on the generators e;, A- - Aej, withl <ip < -+ < i <n.

In particular,
di /k\(R@”) = (Z) ksn
im =
0 k>n.

Proof. Let M = R®". Fix iy < ---ij. It suffices to show the there exists some ® : A¥ M —
R such that
\If(eil/\---/\eik)zl, \If(ejl/\---/\ejk):0

if j1 <--- <grand (i1,...,5) # (J1,.--,Jx). Wewant amap ¢ : M x---x M — R. Send
sign(a) ia(t) th vt

¢(€j1w--,€jk): 0 {Zlaazk}#{]ba]k’}
0 J1, ..., 7k not distinct

If it is alternating on a basis, it is alternating (exercise), so this is well-defined. Then we
get a dual basis of the correct size. O
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14.3 Determinants

Say M is free with basis ej,...,e,, and T : M — M is R-linear. This induces \"(T) :
A" (M) — A" (M); thisis amap R — R, and it sends e A- - -Ae,, — 1. This is multiplication
by some element of R, which we call det(T"). It satisfies Te; A---ATe, = det(T)e1 A---Aep.

Definition 14.5. det(7) is called the determinant of 7.
Lemma 14.3. Tvy A -+« ATv, =det(T)vy A -+ Avy,.

Proof. Expand each v; as a linear combination of the e; A --- A e,. Then the statement
applies to each Tey A--- ATe,, and we can do the steps in reverse. ]

Proposition 14.2. Let T,U : M — M. Then det(T o U) = det(T) det(U).

Proof.

det(TU)ey A=+~ Nep =TUey A---NTUe,
=det(T)Uey A --- ANUey,
=det(T")det(U)er A--- Aep. O

Corollary 14.1. If T : M — M s an isomorphism, det(T) € R*.

Proof. det(T)det(T)~! =1 by the proposition. O
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15 Properties of Determinants and Change of Basis

15.1 Formulas for determinants and effect of elementary matrices

We have an isomorphism M, (R) = Endg(R®") sending a matrix A to the associated linear
transformation 7. We say det(A) := det(T).

Theorem 15.1. det(A) = ) 5 (sign(0))ai (1) An,o(n)-
Proof. Let v; € R®™ be the j-th column vector of A. Then T'(e;) = v; for all j. Then
v Ao Aoy = (det A)er A=+ A e
On the other hand,
n n
VINA- - ANvy = Z Z iy 10452 Qg n€ig N iy N2 Nep
i1=1  in=1

In this sum the term will be zero unless all of the i; are distinct. These also correspond to
o € Sy, such that o(j) = i;.

= Z A5(1),1" " Qo(n),nCa(1) N A €o(n)

o€Sn
= Z ag(l),l e a/a'(n)ﬂl Slgn(o') 61 /\ o e /\ en
oESy N——

=sign(c—1)

= Z sign(o)ay o(1)** Angn)€1 A A en.
O'ESn

A" (R®") = R with basis e; A -+ A ey, so we get the desired equality. O
Proposition 15.1. The determinant has the following properties:

1. det(T) = det(AT).

2. If we switch 2 rows or columns of A to get B, then det(B) = —det(A).

3. If we add an R-multiple of a row or column of A to another to get A, then det(C) =
det(A).

4. If we scale a row or column of A by a € R, to get D, then det(A) = adet(A).
Proof. These follow from the formula for the determinant.

1. We showed this in the proof of the formula.
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2. Reindex the sum by composing with a transposition.

3. If we have a repeated v;, then the term is zero. So

1)1/\---/\(vi+cvj)/\---/\vn—vl/\---/\un—i-w

4. The proof is the same as the previous part. O

0

15.2 Cofactor expansion

Definition 15.1. The (4, j) minor of a matrix A is the matrix A; ; with the i-th row and
J-th column removed.

The (7, j) minor lies in M,,_1(R).

Proposition 15.2. For all k < j <n,

n

det(A) =Y (=1)"a; ; det(Aq ).
=1

Proof. First, write

VA Aoy = (=1 o A(op A Avjig Avjrr A Ay).

Write v; = Z?:l a;i je;, and write w,(;) = v, — a; pe; for all 4, k.

= (=17 aigei A (i’ Ao A wj('i—)l A w](':)-l A Awd))
=1

n
= (*1)j_1 Z Qi ; det(Aiyj)ei ANer N~ Nei—1 Neir1 N+~ Nep
=1
n . .
= Z(—l)zﬂam det(Am)el VANERIVAN G O
=1

Remark 15.1. In this formula, we could have indexed over j, instead.

15.3 Adjoint matrices
Definition 15.2. The adjoint matrix to 4 is the matrix with (i, j)-entry (—1)"™7 det(4;;).

Proposition 15.3. A-ad(A) = det(4) - I,.
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Proof. The (i,7) entry is

Y j det(A) i=37
Zai:k(_l)kﬂ det(Aj x = { et(A) i=j
k=1

i FJ

because if i # j, this is the determinant of A with the j-th row replaced by the i-th row.
So it is 0. 0
Corollary 15.1. A € GL,(R) <= det(A) € R*. In this case, A=t = det(A)~!ad(A).

Corollary 15.2. IfV is free of rank n, then T : V. — V is invertible iff det(T) € R*.

15.4 Change of basis

Let V,W be free R-modules of rank n,m respectively. Let B = (v1,...,v,) and C =
(w1, ..., wy) be ordered bases of V and W. Let T : V. — W be an R-module homomor-
phism. Then A = (a; ;) represents T' with respect to B and C if

m
T(v5) = aijw;
=1

forall 1 <j <n.
B corresponds to ¢p : R" — V, where pp(e;) = v;. Given T : V. — W, we get
gpal oTopp:E"™ = R™is A € My, ,(R) using the standard basis.

Lemma 15.1. Let T' : U =V and T : V — W be R-module homomorphisms where the
modules have bases B, C, C, and D, respectively. Let A" representa T' with respect to
B and C, and It A represent T with respect to C and D. Then AA’ represents TT' with
respect to B and D.

Proof. We can see
¢p oToT opp=(pp 0T opc)o(pg oT opp).
The first part is representaed by A, and the latter part is represented by A’. O

Definition 15.3. Let B, B’ be bases of VV. The change of basis matrix Qp p from
B to B’ is the matrix representing T p : V. — V with Tp p/(v;) = v, with respect to B
and B’ is the matrix representing cpngB’Brch = goél owpr.
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16 Change of Basis, Characteristic Polynomials, Trace, and
Localization of Modules

16.1 Change of basis

Last time, we discussed @p pr, the change of basis matrix from B — B'.
Remark 16.1. From the definition, we can see QE}B, =Qp B

Theorem 16.1 (change of basis). Let T : V. — W be a homomorphism of free R-modules
of finite rank. Let B and B’ be ordered basis of V', and let C and C' be ordered bases of W.
If A represents T' with respect to B and C, then Qcr crAWp pr represents T with respect
to B and C'.

Proof. Note that
oo Top = (e ec) (ea Top) (eBeg).

The left hand side represents T with respect to B’ and C’. The right hand side terms are
represented by Qalc,, A, and @p, p, respectively. O

Definition 16.1. A and A’ in M,,(R) are similar if there exists some @Q € GL,(R) such
that A’ = Q 1AQ.

Definition 16.2. A is diagonalizable if it is similar to a diagonal matrix.

16.2 Characteristic polynomials and trace

Now suppose that R = F' is a field.

Definition 16.3. The characteristic polynomial ¢y € F[z] of an F-linear trnasforma-
tion T': V' — V of vector spaces is det(zid —T).

Here, zid T : F[z]| ®p V — Flz] @ V, where zid —T is really z ® id —id ®T. This
is a map of free modules of finite rank. Similarly, we have ca(z) € F[z]| for A € M, (F),
where ca(x) = det(z] — A), and «I — A € M, (F[z]).

Remark 16.2. cp(z) = ca(z) for A representing 7' with respect to some basis B. This is
independent of the basis B. Let H = Q 'AQ. Then

cp(z) = det(z] — Q TAQ) = det(Q 1 (z] — a)Q)
= det(Q) ! det(x] — A) det(Q) = det(z] — A)

= cy(x).

Remark 16.3. If T'(v) = Av for v € V, A € F, then c¢p(A\) = det(Aid —=T") = 0. So Aid —T
is not invertible.
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Definition 16.4. The trace of a matrix A = [a; ;] € M, (R) is tr(4) = > " | ai,.
tr : M, (R) — R is an additive homomorphism of R-modules.
Lemma 16.1. cq(a) = 2" — tr(A)z" L + -+ + (=1)"det(A).
Proof. To get the constant term, we have
ca(0) =det(—A) = (—1)" det(A).
To get the largest nonzero term, note that
det(z] — A) = > (sign(0)) (281 o(1) — @1,0(1)) - (T0p.0(n) — Bner(n))-
o€Sn

The coefficient of "' comes form the term with o = id:
(:L' - a/Ll) oo <aj‘ — a”,n) — xn — (a’l,l + -4 an7n>mn_l 4. D

Definition 16.5. If Tv = v with v # 0, then A € F is called an eigenvalue of T', and v
is called an eugenvector for T. Then E)\(T) = {v € V : Tv = Av} is an F-subspace of V
called the A-eigenspace for T'.

If T:V — V is an F-linear transofrmation, then V has an F[z]-module structure by
f(z)-v:= f(T)(v). We want to study the module structure. We might as well study the
structure of finitely generated modules over PIDs.

16.3 Localization of modules

Let R be a commutative ring, let M be an R-module, and let S be a multiplicatively closed
subset of R.

Lemma 16.2. The relation ~g on S x M defined by (s,m) ~g (t,n) is there exists some
r € S such that r(sn —tm) = 0 is an equivalence relation.

Definition 16.6. The localization of M by S, called S™'M is the set of equivalence
classes under ~g. We write m/s for the equivalence class of (s, m).

Lemma 16.3. S™'M is an S™'R-module under the operations

m n_tm+sn

tm T sn mo_rm
st st t st

Example 16.1. Let p C R be a prime ideal. Let S, = R\ p. Then R, = S;lR. So

M, = Sp_lM is an Rp-module.

Example 16.2. Let R =Z and M = Z/3Z & Z/5Z & Z*. Then M) = 7./3Z & Z%g), is a

Z3)-module, where Z) = {a/b: 3 1 b}.

®w |3
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17 Localization of Modules, Torsion, Rank, and Local Rings

17.1 Localization of modules

Let R be a commutative ring and S C R be multiplicatively closed. If M is an R-module,
we can define the localization S~'M, which is an S~!R-module.

Example 17.1. Let S be the set of nonzero non-zero divisors in R. Then S™'R = Q(R)
is called the total quotient ring of R. The module S~'M is a Q(R)-module. If R is an
integral domain, @ is a field, so S™'M is a vector space.

If M is and R-module and N is an S~'R-module,
Homg-1(S™'M, N) = Homg(M, N).

That is, localization is a left-adjoint to the forgetful functor.
Localization satisfies a universal property: For any ¢ : M — N, where N is an S™'R-

module,

M—2 N

A
l //// @

S—tM
where ®(m/s) = s 1p(m).
Proposition 17.1. S7'M = ST'R®r M as S~' R-modules.

Proof. Let ST'R x M — S7'M send (r/s,m) ~ (rm)/s. This is left S~!R-linear and
right R-linear, so we get a map S~'R® RM — S~'M of S~'R-modules. Conversely, we
have the R-module homomorphism M — S~'R®p M sending m — 1 ® m. The universal
property gives a map S~!M — ST'R ®p M sending m/s + s~! ® m. Check that these
are inverse maps. O

17.2 Torsion and rank

Let @ = Q(R) be the total quotient ring of R.

Definition 17.1. If M is an R-module, then m € M is torsion if there exists some r € S
such that rm = 0.

Moy = {m € M : m torsion} is an R-submodule of M.
Lemma 17.1. M, = ker(M — Q ®@r M).

Proof. m € My, iff m/1 =0 in Q ®g M, since this is isomorphic to S~'M. O
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Example 17.2. Let A = Z2 ® Z/27Z & Z/37Z. Then Z/27 @ 7Z./37 = Ao is the torsion
part.

Definition 17.2. We say M is torsion-free if M;, = 0.
Definition 17.3. The annihilator of M (in R) is Ann(M) :={r € R:rm =0Vm € M}.
This is an ideal of R.

Lemma 17.2. If R is an integral domain and M is finitely generated over R, then
Ann(M) # 0 if and only if M = Mo,.

Proof. (= ): If Ann(M) # 0, then there exists some r # 0 in M such taht rm = 0 for
all m e M. So m € Mg, for all m € M.

(<= ): Let mq,...,m, € M generated M as an R-module. Let ej,...,r, € R\ {0}
be such that r;m; = 0 for all . THen 71 ---r,m = 0 for all m € M. Since R is an integral
domain, 1 ---7y, # 0, 80 71 -+ -1y, € Ann(M). O

Definition 17.4. The rank of an R-module over an integral domain R is rankp(M) =
dimg(Q ®gr M), if this dimension is finite.

Proposition 17.2. rankr(M) is the mazimal number of R-linearly independent elements
m M.

Proof. An element of M, is by itself linearly dependent. We may replace M by M /Moy,
so we may suppose M is R-torsion free. Them M — @ ®zr M is an injection. M has
< dimg(Q®r M) = rankr(M) =: n linearly independent elements. If v1,...,v, € Q@r M
is a basis over @), then there exists some r € R such that rvy,...,rv, € M, and the rv; are
R-linearly independent. So we have at least n R-linearly independent elements in M. [

17.3 Local rings

Definition 17.5. A commutative ring R is local if it has a unique maximal ideal m.
If R is local, R/m is a field, called the residue field of R.

Proposition 17.3. Let R be commutative, and let p C R be a prime ideal. Then R, is a
local ring with mazimal ideal pRy,. The ideals of R, are R, and IR, with I C p.

Lemma 17.3. If R is local and m is maximal, then R\ m = R*.

Proof. If a € R\ m, then (a) = R. So a € R*. Conversely, if a ¢ R*, then (a) # R, so
(a) Cm. So a €m. O

Lemma 17.4. If R is commutative an m C R is mazimal, then R/m = R,,/mR,,.
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Proof. Look at R/m — Ry,/mR,, given by r +m +— r/1 + mR,,. These are both fields,
so this is an injection. If € R and u € R\ m, then there eixsts some r € R\ m such that
uv = 1 mod m. Then vr +m — (vr)/1 4+ mR,, = r/n+ mR,,. So this is onto. O

Proposition 17.4. Let R be commutative and M be an R-module. The following are
equivalent.

1. M=0
2. My, =0 for all prime ideals p C R
3. My, =0 for all maximal ideals m C R.

Proof. Each of these is a special case of the last, so we just need to show (3) = (1). Let
m € M\ {0}. Let U = Ann(R,,) = {r € M : rm = 0}. I is proper, so I C m for some
maximal ideal m.2 If 7 /u € R,, is such that (r/u)m = 0 € M,,, then there exists s € R\'m
such that srm = 0. Then sr € m, so r € m as m is prime. So Ann(R,,m) C R,,. Then
m/1#0in Ry,. O

Next time, we will prove the following important theorem.

Lemma 17.5 (Nakayama). If M is a finitely generated module over a local ring (R, m)
such that mM = M, then M = 0.

Remark 17.1. What does the condition mM = M mean? M/mM is an R/m-vector
space. This says that if M/mM = 0, then M = 0.

2This uses Zorn’s lemma.
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18 Nakayama’s Lemma and Structure Theory of Finitely
Generated Modules Over PIDs

18.1 Nakayama’s lemma and consequences

Lemma 18.1 (Nakayama). If M is a finitely generated module over a local ring (R, m)
such that M/mM =0, then M = 0.

Proof. Let mq,...,m, € M generate M. Then mM = M, so m; € mM; that is there
exist a; € m such that m; = > ; a;m;. So (1 —ay)my =Y ;- a;m;. and 1 —a; € R* =
R\ m. So m; € span({ma,...,m,}). By recursion, M can be generated by 0 elements, so
M =0. O

Corollary 18.1. Let M be a finitely generated R-module, where (R, m) is local. Let X C M
be such that {x + mM : z € X} generates M/mM as an R/m-vector space. Then X
generates M as an R-module.

Proof. Let N = Rx C M. Then N +mM = M. Now M/N = (N +mM)/N = m(M/N).
So by Nakayama’s lemma, M /N =0, so M = N. O

Here’s how we use this.

Example 18.1. Do the tuples (111,107,50), (23, —17,41), (30, —8,104) span Q? as a Q-
vector space? They will if they span Zf’p) for a prime p. By Nakayama’s lemma, it suffices to
check if they generate Z,) /pZy,) = Z/pZ. For p = 3, the tuples are (0, -1, —1), (1,1, 1),
and (0,1, —1). These triples span F3, so the otiginal set spans Q3.

Lemma 18.2. Let (R,m) be local, and let M be a finitely generated free module over
R. Let X C M. If the image of X in M/mM is R/m-linearly independent, then X is
R-linearly independent and can be extended to a basis of M.

Proof. Let X be the image of X in M/mM. Extend X to a basis B of M/mM. By the
corollary, any lift B of B spans M, and we can choose B to contain X. We claim that B is
R-linearly independent. Say B = {mi,...,my,}. Consider ) ", a;m; € M, where a; € R
and are not all 0. Let k > 0 be minimal such that a; ¢ m**! for some i. Then we have
a map m*/mFtt @p M = mF/mFt @ M/mM — mFM/mFT1M. These are both vector
spaces over R/m. This map is an isomorphism if M = R. In general, M = @ | R, and
tensor products distribute over direct sums, so m*M/m* 1M = @I | m*/mF+l. Then
Yora; @ my Yo aymg, so if the latter is 0, so is the former. But > " ; a; ® m; # 0
since the m; are a basis of M /mM. O
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18.2 Structure theory of finitely generated modules over PIDs
Let R be a PID, and let Q = Q(R).

Lemma 18.3. Any finitely generated R-submodule of Q is cyclic (generated by a single
element).

Proof. If M C @ is a finitely generated R-submodule ,then M = 3" | Ra;, where a; € Q.
Then there exists a nonzero d € R such that do; € R for all i. Then dM C M, so dM = (a),
where a € R. Since d : M — dM is an isomorphism, M = R(a/d). O

Proposition 18.1. Let V be an n-dimensional Q-vector space, and let M C 'V be a finitely
generated R-submodule. Then there exists a basis B = {vi,...,vn} of V such that M is a
fer R-module with basis {vi,...,vx} (kK <n).

Proof. Wlthout loss of generality, M # 0. Take m; € M \ {0}. Then Qm; C V is a
1-dimensional Q-vector space. Then M NQmi = Rv; for some v1 € M by the lemma. Let
M = M/Ruvy, and let V = V.Qui;. Then M — V is an injection. By induction on n, there
exist va, ..., v, € V such that M is free on vy + Ruy, ..., v, + Rvy with k < n, and v; + Rvy
form a basis of V for 2 < i <n. Then M = @le Ruv;, and V = @7, Qu;. O

Corollary 18.2. Fvery finitely generated torsion-free module over a PID is free.

Proof. Let M be a finitely generated torsion-free R-module. Then we have an map M —
M ®p Q, which is an injection, since the kernel is Mo, = 0. It follows by the proposition
that M is free. ]

Corollary 18.3. Any submodule of a free R-module of rank n is free of rank < n.

Proposition 18.2. Let R be a ring, and let m : M — F be a surjection of R-modules with
F free. Then there exists a spitting v : F — M such that v is injection and wo 1 = idp.
Moreover, M = ker(n) @ o(F); i.e. F is a direct summand of M.

Proof. Let B be a basis of F. For each b € B, let m; € M be such that m(m,) = b. Define
t: F — M by (b) = my using the universal property of F. We get ot = idp (since linear
maps that agree on a basis are equal). Then w(m — o mw(m)) = n(m) — (7w o)(w(m)) =
w(m) —m(m) =0. So m —tomn(m) € ker(w). So M = ker(mw) 4+ im(z). If m € ker(w) and
m = t(n), then 0 = m(m) = (mo¢)(n) = n, so m = 0. So these have trivial intersection,
giving us M = ker(7) & im(¢). O
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19 Structure Theorem for Finitely Generated Modules over
PIDs
19.1 Stripping off the torsion free part from a module

Last time, we proved the following:

Proposition 19.1. Let R be a ring, and let w: M — F be a surjection of R-modules with
F free. Then there exists a spitting v : F — M such that v is injection and wo 1 = idp.
Moreover, M = ker(n) ® o(F); i.e. F is a direct summand of M.

Proposition 19.2. If R is a PID and M is a finitely generated R-module, then M =
R" & Mo, for r = rankg(M).

Proof. Let @ = Q(R). Then M — M ®p @ has kernel My, so the image of M /Mo —
M ®pgr Q is torsion-free and hence free. So we have a surjection M — R", where r =
rankp(M). Then M /Moy ®p Q = M ®p Q with kernel Mio,. So M = Mo, @ R". O

19.2 Decomposition of the torsion part of a module

Let M be a finitely generated R-torsion module. Then Ann(M) = (z) for some ¢ € R
because R is a PID. The Chinese remainder theorem gives

=[] r/(=})
=1

where c—7¥ ... 7k is a factorization of ¢ into distinct irreducibles. We then get
M = M/eM = M ®g R/(c) @M@RR/ @M/Tr iM.

We have shown that i i}
~ - ~ kl
M= @My = M
i=1 i=1

Rz, is a local ring with maximal ideal (7;), so all of its ideals have the form (Trf ) for j >0
and (0). So
R/ R 2 Rr /7" R(i)
has ideals (ﬂf) for j > 0 and (0).
Now let 7 € R be irreducible with & > 1, and write R = R/(7¥). Let M be a finitely

generated R-module. We split into cases. If R = R/() is a field: Then M & R for some
d > 0. For the next case, we need the following.
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Proposition 19.3. If M be a finitely generated R-module with 7™M = 0, then M =
Do R/ (1) with ji > jo > -+ 2 ju 2 1.

We want to induct to get this, so we need the following lemma:

Lemma 19.1. If m is a finitely generated R-module and F is a mazimal free R-submodule,
then M = F @ C with 7*~1C = 0.

Here is a case we have to watch out for:

Example 19.1. Z is a free Z-module, and 27Z is a free Z-submodule, but the latter is not
a direct summand of the former.

Lemma 19.2. Any free R-submodule of a finitely generated R-module is a direct summand.
To prove this lemma, we first have the following fact.

Proposition 19.4. Any free R-submodule of a free, finitely generated R-module is a direct
summand.

Proof. Let A be a free R-submodule of a finitely generated free R-module B. We have the
map ¢ : A — B/mB. If a € A with «(a) = 0j then a € ANTB, so 7*~1a = 0. Then a € TA.
So A/mA — B/nB is an inclusion.

Then B/mB = A/mA @ N. Last time, we showed that we can lift a basis of B/7B
containing a basis of A/ A to a basis of B containing a basis of A. Now B =A@ N for
some . O

Assuming lemma 1 is true, we can use the fact to prove the second lemma as follows.

Proof. If A C M is a free R-submodule, choose F' to be a maximal free submodule con-
taining A. Then M = F @& C, and F = A® D by assumption, so M = A® (C o D). O

Now we can prove lemma, 1.

Proof. Let k > 2. Let f be a maximal free R-submodule. Let N = Mz = {n e M :
7%*~In = 0}. Then 7F C N, and 7F is a free R/7"* !-submodule of N. By induction,
there exists an R/7*!-submodule C' such that N = 7F @ C; here, we are using lemma 2
in the inductive step.

We claim that M = F®C. Note that F'//7F — M/N is an isomorphism. For injectivity,
F NN = rF. Surjectivity follows from the maximality of F: we can lift a basis of M/N
containing a basis of F/mF to a basis of a larger or equal free R-module (inside M) by
the result from last time. Then M = N+ F =C+ F. Then FNC =xaFNC =0, so
M=Fa&cC. O
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19.3 The structure theorem

Theorem 19.1 (structure theorem for finitely generated modules over PIDs). Let R be a
PID, and let M be a finitely generated R-module.

1. There exist unique v,k > 0 and nonzero proper ideals Iy C Is C ---I;. such that
MR &R/ ®---® R/I}.

2. There exist unique r,€ > 0 and distinct nonzero prime ideals p; (up to ordering) and
integers Vi1 > Vio > -+ > Vi, > 1 for some m; > 1 such that

L m;
M=R o PEPR/p .

i=1 j=1

The ideals I, ..., I are called invariant factors, and the pl-yi"j are called elementary

divisors.

Remark 19.1. When R = Z, this is exactly the statement of the structure theorem for
finitely generated abelian groups.

Proof. We have already proved the second part. For the first part, let b; = 7711/“ 7r12/2‘j ‘e WZ”
for j =1,...,k, where k is maximal such that b; # 1. Here, we take v; ; = 0 for j > m;.
Set I; = (bj) and apply the Chinese remainder theorem:
¢
~ Vi,j
R/(b;) = D R/(m").
i=1
Uniqueness is left as an exercise.? ]
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20 Jordan Canonical Form

20.1 Existence and description of the Jordan canonical form

Let F be a field. Recall that an F-vector space V with a linear transformation T : V — V
is the same as an F'[z]-module V; The isomorphisms are

(V.T) = f(z) v = f(T)(v)

Ve V—=>V)«V

This induces a correspondence between finite dimensional vector spaces with T : V — V
and finitely generated torsion F[z]-modules V. A finitely generated torsion F'[z]-module is

V=B rl/f)

where f; € F[z] is monic with deg(f;) =n; and f1 | fo | --- | fr. Take the basis of V:
{an---71'”1_1,1,1',...,1‘”2_1,...,1’x7“"xnr—1}

A matrix representing x : V' — V with respect to this basis is

Ay

T

V¢ = Flz]/(f), where f is monic, irreducible and of degree n has basis 1,,...,2" 1. The
matrix Ay representing x : Vy — Vy is determined by:

- =g, 1<i<n-1
n—1
g =" =) e,
=1

_ ¢ -
1 0 —C
Ap=1| 1 :
0
L 1 —Cnp—1]
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the companion matrix to f. The characteristic polnynomial is

cr(z) = ca(z) = cay (2)---cay, (@),

where
T Co
-1 =x C1
ca,(z) = -1
T :
-1 X+ Cp—1
x C1
-1 =z o -1 =z
-1 =z
= -1 -+ (—1)n_160
. x
xT . -1
-1 T+ Cp—1
— ¢
_ <f 0>+Co
T

So ¢r(z) = fi...fr. Then Ann(V) = (f;) = (mr(x)), where mg(z) is the minimal
polynomial.

Assume cp(x) splits completely (e.g. F' is algebraically closed. By the structure theo-
rem, we can write

where \; € F. Then

m t)\
V= @ Vais where @F[g;]/(g; — )
i=1 =1

by grouping the terms with the same A together. Let
Vo = Flz]/(x — A").
Take the basis (z — \)"~ !, (x — A\)"~2,...,1. Then
z- (= A" = ANa = N (= N 2<i<n

z-(x—N"1t= Az - A"t
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Then

(A 1
Al
Jn,,\ A S Mn(F)
1
L Al
is called a Jordan block, and the matrix
Jn1,>\1
A=
Jnt)\t

represents x : V' — V with respect to the basis
(=Xt (=)™ L (= )™M L

The characterisitc polynomial is
cAn,A(m) = .. = (IL' - A)n

20.2 Eigenvalues and eigenspaces

Proposition 20.1. X is an eigenvalue of T iff A\ = \; for some i (where \; are those
appearing in the Jordan canonical form).

Proof. Look at Jy,. Then Jy ,e1 = Ae — 1, and (Jy, — Al)e; = e;—1. A is an eigenvalue of
R iff X\ is on the diagonal of A. O

Definition 20.1. The generalized eigenspace of T for ) is
{veV:(T—X)"v =0 for some m >0}
Proposition 20.2. ¢;(z) splits completely iff V s a direct sum of its generalized eigenspaces.

Example 20.1. Let
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The characteristic polynomial is c4(x) = (z — 1)3. We have 3 possibilities for the Jordan
canonical form:

1 11 11
1 , 1 , 11
1 1 i 1
Note that
1 2 3
A-T= |1 2 3
-1 -2 3]
has nullspace spanned by
2 3
11, 0
0 -1

So we must be in the 2nd case. Look at
(A—1TI)e; =e; +eg —es.

Then we have the basis
B = (e1,e1 + e + e3,2e1 — e2),
and A in this basis is
J=| 1 |=07'4Q
1
where @ is the change of basis matrix from the standard basis to B. We can calculate
1 1 2
Q=10 1 -1
0 -1 0
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21 Elementary Symmetric Functions and Discriminants

21.1 Elementary symmetric functions

Definition 21.1. If F'is a field and z, ..., z, are indeterminates, for 1 < k < n, the k-th

elemetary symmetric polynomial in z1,...,z, is s, € Flz1,...,x,] given by
S’Vlk = E mil.'.x’l‘k = E sz'
1<i1 <ia <+ <ig<n PCJn]i€P
|Pl=F

Example 21.1. Here are some examples of elementary symmetric polynomials.
Spl =21+ -+
Tpmnp = X1 Tn
T2 =zxix+24+x123+ - +x1 Ty + X234+ -+ Toxo+ -+ Tp_1Ty

The module generated by these polynomials is isomorphic to T%(F&")Sk = Sym* (F&")
if k! e F*.

Proposition 21.1. F(z1,...,2,)/F(sn1,...,8nn) is finite, Galois with Galois group Sy,.

Proof. Call this extension K/E. Then

n n

Fw) === =S (=)™ sy’

i=1 =1

has roots x1,...,2z,. So K is the splitting field of f over E. If p € S, there exists a unique
¢(p) € Autg(K) such that ¢(p)(h(21,...,2n)) = h(Tp)s - Tpm))- Then ¢(p)(snk) =
spk) so |phi(p) € Gal(K/E). So ¢ : S, — Gal(K/E) is injective. This is also onto as
[K : E] <deg(f)! =nl. O
Corollary 21.1. FEvery finite group is the Galois group of some field extension.

Proof. If H < S, take Gal(K/K*H). O

Whether this happens for extensions of Q is still an open problem. This is false over
Qp, the p-adic numbers, because all finite extensions of @, are solvable.
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21.2 Discriminants

Definition 21.2. The discriminant of a monic, degree n polynomial f € F[z] with
f=1l,(x — ) € Fla] is
D)= ][I (ei—ap*

1<i<j<n
Proposition 21.2. Let f € F[z]. The following are equivalent:
1. f is inseparable.
2. D(f) =0.
8. f=Y"gaixt and f' =S ia;x’ share a common factor in Flx].
Proposition 21.3. D(f) € F.

Proof. We may assume f is separable. Let K be the splitting field and o € Gal(K/F).
Then

A= ] @i—=)€Fz,... )

1<i<j<n
For 0 € A, 0(A) = sgn(o)A. Then o(A?) = A2, We have an injective map Gal(K/F) —
Sy, sending 7+ p(7). This tells us that 7(D(f)) = D(f). O

We have actually shown the following.

Corollary 21.2. Let f be monic, separable, and irreudcible. D(f) € (F*)? if and only if
Gal(K/F) — A, is an embedding via permutation of the roots.

Example 21.2. Let f = 22+ax+b. Let a, 8 be the roots in F. We also have F(a) = F(f3).
Then —a = a+ B, and b = af.

D = D(f) = (a— B)* = a® — 4b.

If char(F) = 2, then a® — 4b = a®. So F(«a)/F is trivial if a # 0 and inseparable if a = 0.
If char(F) # 2, then F(a)/F is separable. Then a? —rb € F? <= « € F. The quadratic
formua gives us that F(a) = F(v/D).

Example 21.3. Suppose char(F) # 3, and let f = 2% + ax? + bz + ¢ € F[z]. If we let
y =z + 1/3, then

f(x) = fly—a/3) =>4+ (—a?/3+b)y + (3a/27 — ab/3 + ¢).

p q
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So we have gotten rid of the degree 2 term. Let g = 23 + px + ¢ € F[z]. Let K be the
splitting field of f over F, and let «, 8,7 € K be the roots of g. Then

8371(04,57’)/) :O‘+/8+’7:0

53,2(04@7) =P
s33(af,y) = —afy =q

Then
O=(a+B+7)°=a’+5>+++2p

p=(af +ay+B7)* = a?B° + a®29* + 572,

We can the compute
g =32 +p=sss(e—a,z—Bz—7)

g'(x) =30 + 5= (a = B)(a—7)
So in the end, we get
—D(g) = (32 +p)(35% +p)(37° + B) = 27¢* + 4p.

Then observe that
D(f) = D(g) = —27¢* — 4p°.

If f is irreducible, then Gal(K/F) — S3 is an embedding and the Galois group has order
divisible by 3. So this is isomorphic to Az = Q/3, or it is isomorphic to Ss itself. We get
Gal(K/F) = Z/3Z if D(f) € (F*)?, and Gal(K/F) = S3 otherwise.
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22 Norm, Trace, Characters, and Hilbert’s Theorem 90

22.1 Norm and trace

Definition 22.1. Let E/F be a finite extension. For o € E, let m, : E — E be z +— z4.
The trace trg/p : £ — F and norm Ng/p : E — F send a + tr(mg) and a — det(m,),
where we view m, € Endp(F) as a matrix.

Remark 22.1. m,4)3 = ma+Amg, so the trace is a linear map. The norm is multiplicative
because mqg = mq o mg.

Proposition 22.1. Let E/F be finite with x € E. Then

Ng/p(z) = I V= J] o@F,

oc€Embp (F(z)) oc€Embp(E)

trgyp() =N Y o@=| >, o) |[E:F

UEEme(F($)) O'EEme(E)

where N = [F(z) : F|;[E : F(z)] = [F(x): F|;[E : F(x)|;[E: F(z)]s
Proof. In each case, the second equality follows from

=[E: F;|[E: F(z)]s.

Case 1: E = F(z): Let n = [F(x) : F], let fy(t) = >.I_ja — it' be the minimal
polynomial of z over F. We can write f3(1) = [],cpmbp(r(z)(t — o(z))F@FL | Let B
be the basis {1,z,...,2" 1 of F(x). We want to show that f,(t) is the characteristic
polynomial of m,. The matrix of m,, is

0 0 0 —ag
1 —aq
[malp =] 1 :
—0n-2
L 1 —0Qp—1 |

Then the characteristic polynomial of m, is > a;t’. So

tr(p/p (@) = tr(me) = —an-1 = [F(@) : Fli Y 0pcpmbp(r) ()
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o€in Embp(F(z))

For the general case, let {y—1,...,y;} be an F(x)-basis for E. Then F = Eszl F(x)y;.
is a decomposition into m,-invariant subspaces (k = [E : F(z)]). So 8 = {z'y;} is a basis
for E/F, and

My
my
[mals =

My
is block diagonal with blocks of the type of the previous case. So
tr(mg) = [E: F(2)|[F(2) : Fli Y Ooehmbp(r() (@)
oc€Emb g (F(x))

Corollary 22.1. Let E/K/F be finite. Then
NK/F = NE/F © NK/Ea

U"K/F = tI'E/FOtI'K/E.

Proof. Let x € K. Then

Ng/r(Ng/g) = H o H ()

O'EEme(E) TEEmbE(K)

Any ¢ : K — F can be written as & o 7 for some unique |sigma € Embg(E) and 7 €
Embg(K).

YT
7
Then 7 = po 6! fixes E. So

Ng/r(Nk/E) = HHﬁT@?) = H o(z). u

0EEmbp (K)

o — =
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22.2 Characters and Hilbert’s theorem 90

Theorem 22.1 (Hilbert’s theorem 90). Let E/F be finite, Galois with cyclic Galois group
G = (o). Then
ker(Ng/p) = {o(z)/z: 2 € EX},

ker(trg/p) = {o(r) —x: 2 € E}.

The D containments require no conditions, so we need to prove the other containments.
To prove this, we need a bit of character theory.

Definition 22.2. Let GG be a group, and let F be a field. A character on G with values
in F is a group homomorphism y : G — E*.

The set of all characters charp(G) C Fun(G.E) is subset of an E-vector space.
Lemma 22.1. charg(G) is linearly independent.

Proof. Let {x1,...,Xm} be a minimal linearly dependent set. Let Y ;2 a;x; = 0 with all
a; # 0. Choose h € G such that x1(h) # xm(h). Let b; = a;(xi(h) — xm(h)) € E; then
b1 # 0 and b,, = 0 (by definition). Now for g € G,

m—1 m—1
> bixilg) = Y a—ixi(h)xi(9) — aixm(5)xi(9)
=1 =1

m—1 m—1
i=1 i=1

= —amxm<hg) — Xm(h>(_ame(g))
= —amXm(hg) + a — mxm(hg)
=0.

This contradicts the minimality of {x1,..., Xm}- O

We can now prove Hilbert’s theorem 90.

Proof. We want to show that ker(Ng/r) = {o(z)/z : x € E*}. Take x € ker(Ng,p). Then

n—1 [i—1 ' '
Xz = Z HU](x) o'
=0 \j=0

is a character. Then

X2(y) =y + 20 (y) + zo(x)o*(y) + - - + zo(x)o?(x) - 0" (x)o"(y).
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The idea is we want to find a fixed point of applying ¢ and multiplying by z. This is
because if y # 0,

oy Y

y o(y)

For all y € E, we have that zo(xz(y)) = xz(v). If xz(y) # 0, we are done because

r = Xz(y)/o(xz(y)). So xz is a nonzero linear combination of distinct characters and is

hence nonzero by the lemma. Thus, there exists y € E* such that x,(y) # 0. O

— o(y)r=y.

We will do the trace next time.
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23 Discriminants of Linear Maps

23.1 Hilbert’s theorem 90

Let’s complete our proof of Hilbert’s theorem 90.

Theorem 23.1 (Hilbert’s theorem 90). Let E/F be finite, Galois with cyclic Galois group
G = (o). Then
ker(Ng/p) = {o(x)/z:x € EX},

ker(trg/p) = {o(r) —x: 2 € E}.
Last time, we proved the result for the trace.

Proof. dimker(tr) > n — 1, where n = [E : F|. Since ker(trg/p) 2 {o(z) —z : x € E}, it
suffices to show that trg,p # 0. Write the trace as trg/p = >, c; 0. This is a nonzero
linear combination of characters, so trp,p # 0. O

23.2 Discriminants of linear maps

Recall that if f € F[t] factors in F as f =[]}, (¢t — «;), then the discriminant is disc(f) =
[Ti<icjnloi— aj)? If F(a) = E/F is Galois and f is the minimal polynomial of «, then
we can embed G — A, iff disc(f) is a square in F.

Let V be an F-vector space with dim(V') = n. The space {¢) : V@ V' — F'} of bilinear
forms on V has dimension n?. Let 8 = {vy,...,v,} be an ordered basis for V. Then

Hom(V @5 V, F) = M,(F),

via the maps
¥ = My = [¢(vi ® v5)]i g,
Yar(vi ® vj > v Muj) <+ M.

Definition 23.1. The discriminant of ) (with respect to /) is Discg(1)) = det(My).

Proposition 23.1. Let T : V — V be linear with basis 8 of V. Let TQT : VRV - VQV.
Then
Discg(p o T ®@ T) = det(T)? Discg(1)).

Proof. (Tv;, Tvj) = ([T]g,ei)TMw[T]gej, SO

Myorer = [T)5 My[T)s.
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Let E/F be a field extension, and let 8 = {v1,...,v,} be a bassi for E/F. Let

t
EQE™E 2 p

send v @ W +— tr(vw). Call this composition map tr.

Proposition 23.2. Let Embp(E) = {o1,...,0n}. Define Q = [0;(vj)lij. Then Mg =
Q' Q. In particular,
Disca(tr) = det(Q)*.

Proof.
n
tr(vi,v;) = Zak(vivj)
k=1
= op(vi)or(v;)
k=1
= (QTQ)iy- O
Let f(t) = [[2,(t — ;) € F[t] be irreducible and separable. Consider F(aq)/F. We
have the nice basis 8 = {1,a1,...,a" '}. THen Embp(F(a)) = {0} : a1 = a;}. Then
1 a9 . a;‘_l
Q(ala SRR an) = . :
1 ap an—!

is the Vandermonde matrix.

Proposition 23.3. det(Q(a1,...,an)) = [[1<;cj<n 0y — ).

Proof.
1 o ot 1 0 0
1 an agfl 1 as—ay a3_2(a2 — 1)
1 o, ant 1 a,—o a2y, — aq)
s — o ag_Q(ag —ay)
=1
an—ay - A" 2(a, —aq)
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1 n—2

a2 PR al
1 ag - o2
= (a2 — a1)
1 an P QZ_Q

This is the Vandermonde determinant for n — 1 variables. By induction, we are done. [J

So if F(«)/F is eparable and f is the minimum polynomial of «, then

Disc(f) = det(Q(ar, ..., a,))* = Discy q,.. an-1}(t1)

Proposition 23.4. Let F(a)/F be separable of degree n, and let f be the minimum poly-
nomial of a. Then

Disc(f) = (=1)"" V2Ng p(f'())/
Pgoof. Let f(r) = [[j2; (t—ai). Then f'(t)=3"" [1,4(t—ay), and f'(c;) = [];4(qi—ay).
Then

n

Niyp(f'(ei)) = [T os([ (e = )

J=1 i

= JI (ei—ay)

(6.3),i#3

= (2 T (g —a)

1<i<j<n
= (=1)""=D/2 Dige(f). O
Corollary 23.1. Let E/F be separable. The discriminant of the trace form is nonzero.

Proof. Write E = F(«). Write 8 = {1,,a™}. Let f be the minimum polynomial of a.
Then
Discg(tr) = Disc(f) = £Ng,p(f'(a)) # 0. O
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24 Kummer Theory and Solvability by Radicals

24.1 Kummer theory

Definition 24.1. A Kummer extension of a field F' is an extension generated by roots
of elements of F*

Let F be a field, and let u,, = u,(F) be the n-th roots of unity in an algebraic closure
of F of F.

Proposition 24.1. Letn > 1, and let a € F. Set E = F(a) ,where o™ = a. Let d > 1 be
minimal such that o € F.

1. E/F is Galois iff char(F) {d and pug C E.

2. If E/F is Galois, and pg C F, then xq : Gal(E/F) — p, such that xq(0) = o)/«
is an isomorphism onto fiq.

Definition 24.2. y, is the n-th Kummer character of a.

Proof. To prove (1), let f be the minimal polynomial of . Then f | (z¢ — a?), but
f 1 (z™—a™) for all m property dividing d (by the minimality of d. If |u4| = d, then all roots
of 2% — a? are distinct. So f is separable. If |i1g| = m # d, then z¢ — o = (2™ — a™)¥/™,
But f | 2¢—a and f t 2™ —a™, so f is not separable. So char(F) td iff E/F is separable.

Now assume that char(F) { d. Let 0 : E — F be an embedding fixing F' satisfying
oa = Ca for some ¢ € pg. If pg C E, then {, € E, so o(E) C E. So E/F is normal and
hence Galois. If ug Z F, then there exists o such that ¢ has order d, since f { 2™ — o™ for
all m strictly dividing d. Then (a ¢ E, so ca ¢ E. So E/F is not normal.

To prove (2), suppose that E/F is Galois and pg C F. Then

or(a)  oT1(a)o(a) o 7(a
Xalor) = 710 T ) _ 00, | TV ) o(xalr).
a ola) « ! a
——
EpgCF
Then y, is 1 to 1 since it is onto and [E : F] < d, since f | (z? — a9). O

Remark 24.1. In general, even if y1 Z F, we have a map x, : Gal(E/F) — py send ing
o — o(a)/a that is a 1-cocycle: x4 (07) — xa(0) - (xa(T)).

Proposition 24.2. Let char(F) {n, and p, C F. If E/F is a cyclic extension of degree
N, then E = F(«) with o™ € F*.
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Proof. Let i, = (¢). Then Ng,p(¢) = ¢" = 1. Then Hilbert’s theorem 90 gives us that
there exists a € F and o € Gal(E/F) of order n such that o(«a)/a = (.

n—1 n—1
Ng/p(a) = H ol(a) = H Cla = (M=D/2gn — (_q)n—lgn,
i=0 i=0

Set a = —Ng/p(—a) € F*. Then

at = (_1)n_1NE/F(a) = —Ng/p(—a) =a e F*. ]

24.2 Perfect pairing

Definition 24.3. An R-bilinear pairing (-,-) : A x B — C'is perfect if the induced maps
A — Homp(B,C) and B — Hompg(A, C) are both isomorphisms. It is nondegenerate if
these are both injective.

Example 24.1. Let V be an infinite-dimensional vector space over F'. Then look at the
pairing V' x V* — F. Then we get an embedding V' — Hom(V*, F') = V*x, which is not
in general an isomorphism. So this pairing is nondegenerate, but it is not perfect.

Theorem 24.1. Let char(F) {n and p, C F. Let E/F be (finite) abelian of exponent di-
viding n, and set A = F*N(E*)"™. Then there is a perfect pairing Gal(E/F)x A/(F*)" —
pin sending (o,a) — o(a'/™)/a"/" = x4(0), and E = F(Y/A) = F({/a:a € A). In partic-
ular we have bijections between (finite) abelian extension of F' of exponent dividing n and
subgroups of F* containing (F*)" (with finite indez):

E s F* N (EX)",
F(VA) < A.

Proof. We have a map A/(F*)" — Hom(Gal(E/F), u,) sending a — x,. Then x, = 1 iff
€ (F*)™. Sothismapis1to 1. Given x : Gal(E/F) — p,, the kernel H of x corresponds
to K = E! with K/F cyclic of degree dividing n. By the previous proposition, there exists
some a = " € A such that K = F(«). Then a — x,. Then y is some power of y,. So
this map is onto, as well.
We have a map Gal(E/F) — Hom(A/(F*)", uy) sending ¢ +— (a +— Xq4(0)). Then
o +— 1 iff o|p = id|a, which is equivalent to o|x = 1 for all cyclic K/F in E. This is
equivalent to ¢ = 1. This is an injective map between groups of the same order, so it is
onto. O
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24.3 Solvability by radicals

Definition 24.4. A finite field extension is solvable by radicals if there exists s > 0 and
fields E; with 0 <4 < s such that

1. By = F,
2. Eiy1 = Ei(v/a;) a;, € EX,n; > 1

3. E,DE.

4

If s = F, then we call E a radical extension.

Theorem 24.2. If f € F[x] is nonconstant with splitting gield K of degree prime to
char(F'), then Gal(K/F) is solvable if and only if K/F is solvable by radicals.

We do this because E is just so cool.
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25 Solvability by Radicals and Integral Extensions

25.1 Solvability by radicals

Theorem 25.1. Let f € F[z] be nonconstant with splitting field K of degree not divisible
by char(F'). Then K is solvable by radicals if and only if Gal(K/F) is solvable.

Proof. Let n = [K : F|, let L = K((,), and let E = F((,), where ((,) = pn. We claim
that K/F is solvable by radicals iff L/F is solvable by radicals. For (= ), we adjoin the
same roots of unity. For ( <= ), if L/FE is solvable by radicals, then L/F' is solvable by
radicals. Then K/F is solvable by radicals because K C L C K((,) (where K is as in
the definition of solvability by radicals).

Now Gal(L/F) = Gal(K/K N E) < Gal(K/F), so if Gal(K/F) is solvable, then
Gal(L/FE) is solvable. Conversely, since Gal(L/FE) is solvable, and since Gal(K N E/F) C
Gal(E/F) is abelian, Gal(L/F') solvable =—> Gal(K/F’) is solvable.

So we may assume that ¢, € F. Suppose K/F is solvable by radicals. There exists
L D L such that L/F is a radical extension. Exercise: we may choose L such that L/F is
Galois. (The idea for this is to show that the normal closure of L/F is still radical.) Tbe
Gal(L/F) is salvable since we have fields F' = Ly C Ly C L1 C --- C Ly = L, such that
each L;/L;_y is abelian, and L;/F is Galois.

Suppose Gal(K/F) is solvable. Then there exist intermediate fields K;/F which are
normal and Ky = K such that each Gal(K;11/K;) is finite and abelian (given by adjoining
n-th roots of elements in the previous field). So K/F is solvable by radicals. O

Corollary 25.1. If char(F) {6 and K is the splitting field of an irreducible polynomial of
degree < 4, then K/F is solvable by radicals.

Why 47 This is because Ajs is the smallest nonsolvable group.
Example 25.1. f = 225 — 10z + 5 has Galois group Ss. It is irreducible by Eisenstein’s
criterion. It has 3 real roots.
25.2 Integral extensions

Let B be a commutative ring, and let A be a subring of B. B/A is an extension of
commutative rings.

Definition 25.1. We say 8 € B is integral over A if § is the root of a monic polynomial
in Alz].

Example 25.2. Any element a € A is integral over a, as it is the root of x — a.

Example 25.3. Let L/K be an extension of fields. If § is algebraic over K, then f is
integral over K | as it is the root of its minimal polynomial.
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Example 25.4. /2 is integral over Z as the root of 2% — 2.

Example 25.5. (1 —+/5)/2 is integral over Z as the root of 22 — x — 1.

Example 25.6. 1/2 is not integral over Z. Let f = >"" | a;2* with a, = 1, a; € Z. Then
F(1/2) € (1/2)" + (1/2"1)Z, so f(1/2) # 0.

Definition 25.2. 3 € Q C C is an algebraic integer if it is integral over Z.

Definition 25.3. A number field is a finite extension of Q.

Proposition 25.1. Let g € B. The following are equivalent.

1. (B is integral over A.
2. There exists n > 1 such that {1,3,...,8" '} generates A[f] as an A-module.
3. A[f] is finitely generated as an A-module.

4. There exists an A[f]-submodule M of B that is finitely generated over A and faithful
(i.e. Annypg (M) = 0).

Proof. (1) = (2): There exists a monic f € A[z] of degree n with f(5) = 0. Then
f(z) =a™+ Z?:_ll a—i—12" so " = — Z?:_ll a;_18° € A(1,8,...,8" 1. By recursion,
™ € A(1,B,...,8" 1) for all M > n. So A[A] is generated by {1,8,...,8" !} as an
A-module.

(2) = (3): This is a special case.

(3) = (4): Let M = A[f]. Then Ann 4 (A[8]) = 0 since A[d] is free over A[S].

(4) = (1): M =3, Ay; C B for some ; € B. Without loss of generality, suppose
B # 0. Then By, = Z?Zl a;j7vj, where a; ; € A. So we can form a linear transformation
T:A" — A" by [T);j = a;j. Then f = cp(x). Since f(5) : M — M is 0 and M is faithful,
1(8) = 0. O

Example 25.7. 1/2 € Q is not integral over Z since Z[1/2] is not Z-finitely generated.
Definition 25.4. B/A is an integral extension if eery 8 € B is integral over A.

Example 25.8. Z[\/2]/Z is an integral extension. It suffices to show that a = a + by/2 is
always the root of a polynomial. Take the polynomial 22 + 2az + (a? — 2b?).

Example 25.9. Let B be a finitely generated A-module, and let M be a finitely generated
B-module. Then M is a finitely generated A-module.

Next time, we will prove the following.
Proposition 25.2. Let B = A[f1,...,Bn]. The following are equivalent.

1. B is integral over A.
2. Each p; is integral over A.

3. B is finitely generated as an A-module.
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26 Integral Extensions and Integral Closure

26.1 Towers of integral extensions

Proposition 26.1. Let B = A[fB1,...,5,). The following are equivalent.
1. B is integral over A.
2. FEach B; is integral over A.
3. B is finitely generated as an A-module.

Proof. (1) = (2): This is by definition.

(2) = (3): Recall the lemma that if B is a finitely generated A-module and M is
a finitely generated B-module, then M is a finitely generated A-module. So it is enough
to show (by recursion) that A[B1, ..., Bj4+1] is finitely generated over A[f1, ..., B;] for all
0 <j<k-—1. So we reduce to the case B = A[f], where f is integral over A. By a
proposition from last time, B is finitely generated over A.

(3) = (1): B is a faithful B-module, and it is finitely generated over A. Take 5 € B.
Then B is an A[fS]-submodule of B that is faithful and finitely generated over A, so 3 is
integral over A (by the same proposition from last time). O

Proposition 26.2. If B/A and C/B are integral, then so is C/A.

Proof. Let v € C. There exists a monic f € B[z] with v as a root. Let B’ be the A-
subalgebra of B generated by the coefficients of f. By the previous proposition, B’ is
finitely generated as an A-module. Then B’[y]/B’ is integral, so B[y] is finitely generated
as a B’ module. Then B'[v] is finitely generated as an A-module. Thus, ~ is integral over
A. So C' is integral over A. O
26.2 Integral closure

Definition 26.1. The integral closure of A in B is the subset of elements in B integral
over A.

Proposition 26.3. The integral closure of A in B is an A-subalgebra of B.

Proof. Look at Ala, 5], where «, 8 € B are integral over A. This is integral over A. So
o — 8 and af are integral over A. O

Example 26.1. The integral closure of Z in Q is Z.
Example 26.2. The integral closure of Z in Z[z] is Z.
Example 26.3. The integral closure of Z in Q(v/2) is Z[v/2].
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Definition 26.2. The ring of integers O of a number field K is the integral closure of
Z in K.

Remark 26.1. Integral closure as we have defined it is not absolute. It is relative to the
larger ring B.

Definition 26.3. A domain A is integrally closed if it is its own integral closure in its
quotient field.

Example 26.4. 7Z is integrally closed.
Example 26.5. Any field is integrally closed.
So this is not the same notion as algebraically closed.

Proposition 26.4. Let A be an integrally closed domain (resp. UFD). Let K = Q(A),
and let L/K be a field extension. If B € L is integral over A with minimal polynomial
f € Klz], then f € Alx].

Proof. Let A be integrally closed. Let g € Alzx] be monic, having 5 as a root. Then
f | g in K[z]. Every root of g in K (algebraic closure) is integral over A. In K|[z],
f(x) =TI (x — B;), where the f5; are integral over A. So all coefficients of f are integral
over A and are in K. So f € A[x], as A is integrally closed.

Let A be a UFD. There exists a d € K such that df | g (since Aisa UFD). f is monic,
sod € A. g is monic, so d € A*. So f € Alz]. O

Corollary 26.1. UFDs are integrally closed.

Proof. Let A be a UFD, and let a € K = Q(A) be integral over A. x —a € KJz] is the
minimal polynomial. By the proposition, x — a € Ax]. So a € A. O

Example 26.6. Z[\/17] is not integrally closed. a = (1 ++/17)/2 satisfies 22 — x — 4. So
Z[\/17] is not a UFD.

Proposition 26.5. The integral closure of an integral domain A in an integrally closed
extension B/A is integrally closed.

Proof. Let A be the integral closure of A in B. Let Q = Q(A) be the quotient field of A.
Let o € Q be integral over A. A[a]/A is integral (by a previous proposition). Also, A/A

is integral, so A[a]/A is integral. So « is integral over A, and o € B, so a € A. O

Example 26.7. Let Z, the algebraic integers, be the integral closure of Z in Q C C. Then
Z is integrally closed.

Example 26.8. Let K C Q be a number field. Then the ring of integers, Ox = ZN K, is
integrally closed.
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Proposition 26.6. Let A be an integrally closed domain with quotient field K. Let L be
an algebraic extension of K. Then the integral closure of B of A in L has quotient field L.
L

AN

B

K

AN

A
In fact, if B € L, then B =0b/d with b € B, d € A.

Proof. Let B € L bearootof f=>"" ,a;z; € K[z], where a, = 1. Let d € A\ {0} be such
that df € A[z]. Consider g = dV f(d~'z) = > I ,d"‘a;x" € A[z] is monic, and g(dB) = 0.
So df € B. Since b:=df € B, f = b/d. O

Theorem 26.1. Let d > 1 be squarefree.

o _ |z d=1 (mod 4)
QWd) — Z[\/d] d=2,3 (mod 4).

Proof. Let a = a4+ bVd € OQ(\/EV where a,b € Q. If b =0, then a € Z. If b # 0, then «
has a minimal polynomial f = 22 — 2ax + (a® — b?d). « is integral, so f € Z[z]. So 2a € Z.
We have 2 cases:

1. If a € Z, then b*d € Z. This implies b € Z, since d is squarefree.

2. If a ¢ Z, then 2a = d/,2b = V/ € Z, where a/,b' are odd. Then a® — b? — d =
2 /)2

W € 7. So (a’)? = (V)2d (mod 4). The only squares in Z/4Z are 0 and 1.

So f =1 (mod 4). In this case, check that % is integral. O
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27 Ideals of Extensions of Rings

27.1 The going up theorem

Suppose B/A is an extension of commutative rings. How do ideals of A and ideals of B
compare? If we have an ideal a of A, then aB is an ideal of B. We can go back by sending
b—fNA.

Definition 27.1. We say an ideal b C B lies over a C Aif bN A = a.
If p is prime, then pB need not be prime.

Example 27.1. Extend Z to Z[v2]. Then (2) — 2Z[v2] = (sqrt2)?. However, if q C
Z[+/2] is prime, then q NZ is prime in Z.

Proposition 27.1. Let B/A be an extension of commutative rings.
1. If b C B lies over a C A, then A/a injects into B/b.
2. If S C A is a multiplicatively closed subset and B/A is integral, then sois ST'B/S™1A.
3. If B/A is integral and A is a field, then so is B.

Proposition 27.2. Suppose B/A is integral. If p C A is prime, then there exists a prime
q C B lying over p.

Proof. Consider S, = A\ p. Let By := Sng; this is integral over A,. Let 9 C B, be
maximal. Then m = M N A, is maximal: A/m — B/ is an injection, so by the 1st
property, A/m is a field. So p = A,. Let ¢ : B — B,. Then ¢ = ¢~1(9M), so q is prime.
Then qn A= 1) NA=u"1A) (pAy) =p. O

Theorem 27.1 (going up theorem). Let B/A be integral. Let p1 C po be primes of A, and
let q1 C B be lying over p1. Then there exists a prime qa C B with qa O q1 such that qo
lies over po.

Proof. Let A = A/py, and let B = B/q;. Let m : B — B be the quotient map. Let
P2 := m(p2). B/A is integral, so there exists aprime gz of B lying over pz. Then go =
7 1(q2) 2 q1. Then g2 N A = 7 1(gy N A) = 7= (p2) = p2 since pa D p1. O
27.2 The going down theorem

Proposition 27.3. Let B/A be an extension, and let B' be the integral closure of A in
B. Then for any multiplicatively closed S C A, S™'B’ is the integral closure of S™'A in
S—1B.

That is, integral closure is preserved by localization.
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Proof. 1f b/s € S™!B is integral over S~ A, there exists a monic f € S~tA[z] f(b/s) = 0.
Write f = 2™ + Z?z_ol %x’ with a; € A, s; € S. Set t = sp---$p—1. Then (st)"f(x/ts) €

Alz] has root z = bt € B'. So s 'b=s"1t"1zin S71B". O

In commutative algebra, we often study what properties are local. For example, we
showed earlier that a module is zero iff its localizations at all maximal or all prime ideals
are zero.

Proposition 27.4. Let A be an integral domain. The following are equivalent.
1. A is integrally closed.
2. Ay is integrally closed for all prime ideals p C A.
3. A is integrally closed for all mazimal ideals m of A.

Proof. Let A be the integral closure of A in Q(A). Then A = A iff A/A = 0. This is an
A-modules, so this happens iff (A/A), = 0 for all p. Observe that (4/A4), = A,/Ay, where
A, = Sy LA is the integral closure of Ap. O

Theorem 27.2 (going down theorem). Let B/A be an integral extension of integral do-
mains such that A is integrally closed. Let pa C p1 be primes of A, and let q1 C B be lying
over p1. Then there exists a prime q2 C B with q2 C q1 such that qa lies over ps.

27.3 Integral extensions in extensions of the quotient field

Let A be an integral domain, and let K = Q(A). Let L be a finite, separable extension of
K, and let B be the integral closure of A in L. Then

Lemma 27.1.
Trr/x(B) C A, Np/k(B) C A.

Proof. The minimal polynomial f of 5 € B lies in A[z]. Then f = 2" — TrL/K(ﬁ)a:"’I +
A (=1)"INL (B). O

Proposition 27.5. There exists an ordered basis {a1,...,a,} of L/K contained in B™.
Set d = D(a,...,an) and M =31 | Ay, Then M C B Cd ' M.

Proof. Start with a basis {51,...,8,} of L/K. Recall that each ; = b;/a; with b; € B
and a; € A. So multiplying through by ay,...,a,, we have a basis of L/K in B".

Given {a1,...,a,}, any B € L has the form § = Y. | ¢;a;, where ¢; € K. Suppose
Try g (aB)]inA for all a € B (e.g. this holds if 3 € B by the lemma). Consider A >
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Trp/x(iB) = 325 ¢j Trp i (aiay). Note that Trp g (i) is the (i,) entry of @ =
(Trpk (@icy)). Then Q* = adj(Q), and QQ* = dI,. So we get

C1 d61
QR || =] €A™
Cn, dey,
So we get d3 =d Y 1, aja; =€ > i Aoy = M. Then dB C M, so BC d ' M. O

Remark 27.1. If B is Noetherian, then M is a finitely generated torsion-free B-submodule
of L. If B were a PID, then we would get that M is free.

Now assume K/Q is a finite extension. We could define disc(K') = disc(basis of Ok /Z).
This is actually independent of basis.
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