Math 210B Lecture Notes

Professor: Romyar Sharifi Scribe: Daniel Raban

Contents

1	Free	Modules	5
	1.1	Free modules over rings	5
	1.2	Bases and vector spaces	5
	1.3	Cardinality of bases	6
2	Introduction to Field Theory		7
	2.1	Field extensions	7
	2.2	Algebraic extensions, minimal polynomials, and splitting fields	7
	2.3	Degrees of extensions	8
3	Finit	e Fields and Cyclotomic Fields	10
	3.1	Finite fields	10
	3.2	Cyclotomic fields and polynomials	11
4	Möbius Inversion, Cyclotomic Polynomials, and Field Embeddings		13
	4.1	Möbius inversion and cyclotomic polynomials	13
	4.2	Field embeddings	14
5	Alge	braic Closure	16
	5.1	Algebraically closed fields	16
	5.2	Algebraic closure	17
6	Tran	scendental Extensions and Separability	18
	6.1	Transcendental extensions	18
	6.2	Separability	19
7	Inseparability and Perfect Fields		21
	7.1	Towers of separable extensions	21
	7.2	Purely inseparable extensions and degrees of separability and inseparability	21
	7.3	Perfect fields	22
	7.4	The primitive element theorem	22

8	Normal Extensions, Galois Extensions, and Galois Groups	24
	8.1 The primitive element theorem	24
	8.2 Normal extensions	24
	8.3 Galois groups and extensions	25
	8.4 Fixed fields	26
9	The Fundamental Theorem of Galois Theory	27
	9.1 Restriction of automorphisms and the Galois group over a fixed field	27
	9.2 The Galois correspondence	27
10	Profinite Groups and Infinite Galois Theory	29
	10.1 Galois groups of infinite field extensions	29
	10.2 Topological and profinite groups	29
	10.3 The fundamental theorem of Galois theory for infinite degree extensions \ldots	31
11	Tensor Products	32
	11.1 Construction, universal property, and examples	32
	11.2 Properties of the tensor product	34
12	2 Tensor Products of Algebras and Homomorphism Groups	35
	12.1 Tensor products of algebras	35
	12.2 Homomorphism groups	36
	12.3 Dual vector spaces	36
	12.4 Adjointness of Hom and \otimes	37
13	Hom- \otimes Adjunction, Tensor Powers, and Graded Algebras	38
	13.1 Adjunction of Hom and \otimes	38
	13.2 Tensor powers and graded algebras	39
14	Symmetric Powers, Exterior Powers, and Determinants	41
	14.1 Symmetric algebras and powers	41
	14.2 Exterior algebras and powers	41
	14.3 Determinants	43
15	Properties of Determinants and Change of Basis	44
	15.1 Formulas for determinants and effect of elementary matrices	44
	15.2 Cofactor expansion	45
	15.3 Adjoint matrices	45
	15.4 Change of basis	46

16 Change of Basis, Characteristic Polynomials, Trace, and Localization of	t.
Modules	47
16.1 Change of basis	47
16.2 Characteristic polynomials and trace	47
16.3 Localization of modules	48
17 Localization of Modules, Torsion, Rank, and Local Rings	49
17.1 Localization of modules	49
17.2 Torsion and rank	49
17.3 Local rings	50
18 Nakayama's Lemma and Structure Theory of Finitely Generated Mod-	
ules Over PIDs	52
18.1 Nakayama's lemma and consequences	52
18.2 Structure theory of finitely generated modules over PIDs	53
19 Structure Theorem for Finitely Generated Modules over PIDs	54
19.1 Stripping off the torsion free part from a module	54
19.2 Decomposition of the torsion part of a module	54
19.3 The structure theorem	56
20 Jordan Canonical Form	57
20.1 Existence and description of the Jordan canonical form	57 57
20.1 Existence and description of the Jordan canonical form	57 59
20.2 Eigenvalues and eigenspaces	59
21 Elementary Symmetric Functions and Discriminants	61
21.1 Elementary symmetric functions	61
21.2 Discriminants	62
22 Norm, Trace, Characters, and Hilbert's Theorem 90	64
22.1 Norm and trace	64
22.2 Characters and Hilbert's theorem 90	66
23 Discriminants of Linear Maps	68
	68
23.1 Hilbert's theorem 90 23.2 Discriminants of linear maps	68
25.2 Distriminants of mear maps	00
24 Kummer Theory and Solvability by Radicals	71
24.1 Kummer theory	71
24.2 Perfect pairing	72
24.3 Solvability by radicals	73

25	Solvability by Radicals and Integral Extensions	74		
	25.1 Solvability by radicals	74		
	25.2 Integral extensions	74		
26	Integral Extensions and Integral Closure	76		
	26.1 Towers of integral extensions	76		
	26.2 Integral closure	76		
27 Ideals of Extensions of Rings				
	27.1 The going up theorem	79		
	27.2 The going down theorem	79		
	27.3 Integral extensions in extensions of the quotient field	80		

1 Free Modules

1.1 Free modules over rings

Let R be a commutative ring.

Definition 1.1. An *R*-module *M* is **free** on a subset *X* if for any *R*-module *N* and map $f : X \to N$, there exists a unique *R*-module homomorphism $\phi_f : M \to N$ such that $\phi_f|_X = f$.

Example 1.1. If X is a set, we can construct the free module on X: $F_X = \bigoplus_{x \in X} R \cdot x$.

We can think of this as a functor F from Set to R-mod. With this viewpoint, if $f: X \to Y$, then $F(f): F_X \to F_Y$ is given by $F(f)(\sum_{i=1}^n a_i x_i) = \sum_{i=1}^n a_i f(x_i)$. So for $F: \text{Set} \to \text{R-mod}$,

 $\operatorname{Hom}_{\operatorname{Set}}(X, N) \cong \operatorname{Hom}_{\operatorname{R-mod}}(F_X, N),$

where this isomorphism is natural. That is, F is left-adjoint to the forgetful functor from R-mod to Set.

Lemma 1.1. An R-module M is free on X if and only if

- 1. X generates M as an R-module (i.e. for all $m \in M$, there exist $x_1, \ldots, x_n \in X$ and $a_1, \ldots, a_n \in R$ such that $m = \sum a_i x_i$)
- 2. X is R-linearly independent (i.e. if $\sum_{i=1}^{n} a_i x_i = 0$ with $s_1, \ldots, x_n \in X$ distinct, then $a_i = 0$ for all i).

Proof. If M is free on X_i then there exists a unique isomorphism from M to F_X , induced by the identity on X. F_X satisfies these two properties, so M does.

If M satisfies the two properties, then there exists a unique $\phi : F_X \to M$ sending $x \mapsto X$ (since $X \subseteq M$). Property 1 implies that ϕ is surjective, and property 2 implies that ϕ is injective.

1.2 Bases and vector spaces

Definition 1.2. If X generates the R-module M and is linearly independent, we call it a **basis** of the M.

Theorem 1.1. Every vector space V over a field has a basis. In fact, every linearly independent set in V is contained in a basis, and every spanning set contains a basis.

Proof. We will prove the first statement; the other two statements follow by a similar argument. Let V be an F-vector space, where F is a field. Conide the set S of subsets X of V that are F-linearly independent. (S, \subseteq) is a partially ordered set (poset). If C is a chain, $\bigcup_{X \in C} X$ is linearly independent, so it is an upper bound on C. By Zorn's lemma, S has a maximal element B. Let W = span(B). If $v \in V \setminus W$, then $B \cup \{v\}$ is linearly independent, contradicting the maximality of B. Then V = W, so B is a basis. \Box

Example 1.2. The field condition is very important; here are counterexamples for general rings. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}$. Then $2 \in \mathbb{Z}$, but 2 is not contained in a basis of \mathbb{Z} . The set $\{2, 3\}$ spans \mathbb{Z} , but does not contain a basis.

Proposition 1.1. Let V be an F-vector space with a basis of n elements. Let $Y \subseteq W$.

- 1. If Y spans V, then $|Y| \ge n$.
- 2. If Y is linearly independent, then $|Y| \leq n$.
- 3. If |Y| = n, then Y is linearly independent iff Y spans V.

Remark 1.1. The first two properties hold for free modules with a basis of n elements as well, but the 2nd property becomes harder to prove. For the third property, in the general case, we just have that if Y spans and |Y| = n, then Y is linearly independent.

Corollary 1.1. If $\varphi : V \to W$ is an *F*-linear transformation of finite-dimensional vector spaces over *F*, then $\dim_F(V) = \dim_F(\ker(\varphi)) + \dim_F(\operatorname{im}(\varphi))$. In particular, if $\dim V = \dim W$, then φ is injective iff φ is surjective iff φ is an isomorphism.

1.3 Cardinality of bases

Theorem 1.2. If X and Y are sets and $F_X \cong F_Y$, then X and Y have the same cardinality.

Proof. Suppose $|Y| \ge |X|$ and first suppose that X is infinite. It suffices to show F_X has no basis of cardinality > |X|. Suppose $B \subseteq F_X$ is a basis of F_X . Every $x \in X$ is a finite linear combination of some elements in B; let B_x be the set of these. Then $|\prod_{x\in X} B_x| \ge |\bigcup_{x\in X} B|$ and it generates F_X , so we can get the upper bound on cardinality $|B| \le |\mathbb{Z} \times X| = |X|$. Therefore, F_X has no basis of cardinality > |X|.

If Y is finite, let \mathfrak{m} be a maximal ideal of R. Then $F = R/\mathfrak{m}$ is a field, and

$$F_X/\mathfrak{m}F_X \cong \left(\bigoplus_{x\in X} R\right)/\mathfrak{m}\left(\bigoplus_{x\in X} R\right) \cong \bigoplus_{x\in X} F.$$

The same is try for F_Y . The isomorphism $F_X \cong F_Y$ induces the isomorphism of F-vector spaces $F_X/\mathfrak{m}F_X \cong F_Y/\mathfrak{m}F_Y$, which then have bases of cardinality |X| and |Y|. Y is finite, so X is finite and has cardinality |X| = |Y|.

2 Introduction to Field Theory

2.1 Field extensions

Definition 2.1. A field E is an **extension field** (or **extension**) of a field F if F is a subfield of E.

We often write E/F to denote that E is an extension of F. F is called the **ground** field of E/F. E is an F-vector space. If E is finite dimensional over F, we say that E/F is a finite extension.

Definition 2.2. Let E be finite dimensional over F. Then the degree [E:F] is $\dim_F(E)$.

Definition 2.3. Let $S \subseteq E$. We say S generates E/F if E is the smallest subfield of E containing F and S.

If $S = \{\alpha_1, \ldots, \alpha_n\}$, we write $E = F(\alpha_1, \ldots, \alpha_n)$.

Lemma 2.1. Every field F is an extension of \mathbb{Q} if char(F) = 0 and \mathbb{F}_p if char(F) = p.

Proof. \mathbb{Q} or \mathbb{F}_p here is the subfield generated by 1.

Definition 2.4. An intermediate field E' in E/F is a subfield of E containing F.

Example 2.1. Q(i) and $Q(\sqrt{2})$ are intermediate fields of \mathbb{C}/\mathbb{Q} .

Note that $\mathbb{Q}(i) = \mathbb{Q}[i] \subseteq \mathbb{C}$ and $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}] \subseteq \mathbb{C}$. This is not always the case.

Example 2.2. Let $\mathbb{Q}(x) = \{f/g : f, g \in \mathbb{Q}[x], g \neq 0\}$. The field of rational functions is $\mathbb{Q}(\mathbb{Q}[x])$. $\mathbb{Q}(x) \neq \mathbb{Q}[x]$

Lemma 2.2. Let E/F be an extension and $\alpha \in E$. Then $F(\alpha) = \mathbb{Q}(F[\alpha])$.

Proof. $F(\alpha)$ is the smallest subfield containing $F \cup \{\alpha\}$. $F[\alpha]$ is the smallest subring containing $F \cup \{\alpha\}$. The inclusion $\iota : F[\alpha] \to F(\alpha)$ is injective and induces an isomorphism $Q(F[\alpha]) \to F(\alpha)$ of fields.

2.2 Algebraic extensions, minimal polynomials, and splitting fields

Definition 2.5. If E/F is an extension and $\alpha \in E$, then α is algebraic (over F) if $F[\alpha] = F(\alpha)$ and transcendental otherwise. E/F is algebraic if every $\alpha \in E$ is algebraic over F and transcendental otherwise.

Proposition 2.1. If $\alpha \in E$ is algebraic over F. then there exists a unique monic irreducible polynomial $f \in F[x]$ such that $f(\alpha) = 0$. Moreover, $F[x]/(f) \cong F(\alpha)$ by sending $g(x) \mapsto g(\alpha)$.

This f is called the **minimal polynomial** of α over F.

Proof. Note that $1/\alpha = g(\alpha)$ for some $g \in F[x]$. Then $\alpha g(\alpha) - 1 = 0$. Set h = xg(x) - 1. There exists a monic irreducible $f \mid h$ such that $f(\alpha) = 0$. If $p \in F[x]$ satisfies $p(\alpha) = 0$ and $f \nmid p$, then (f,p) = (1). But the ideal generated by α is not trivial. So $f \mid p$. The last statement follows.

Corollary 2.1. If α is algebraic over F, then $F(\alpha)/F$ is finite of degree equal to the degree of the minimal polynomial of α with basis $\{1, \alpha, \ldots, \alpha^{n-1}\}$ over F.

Proposition 2.2. If E/F is finite and $\alpha \in E$, then α is algebraic.

Proof. The set $\{1, \alpha, \ldots, \alpha^{[E:F]}\}$ is linearly depedent. The relation gives a polynomial with α as a root.

Corollary 2.2. If E/F is finite, then $E = F(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in E$.

Theorem 2.1 (Kronecker). Given nonconstant $f \in F[x]$, there exists E/F such that E contains a root of F.

Proof. Take F[x]/(g), where g is monic, irreducible, and $g \mid f$.

Definition 2.6. A splitting field for nonconstant $f \in F[x]$ is a field E in which f factors into a product of linear polynomials.

Corollary 2.3. For any nonconstant $f \in F[x]$, there exists a splitting field for f over F.

Example 2.3. A splitting field for $x^3 - 2$ (over \mathbb{Q}) in \mathbb{C} is $\mathbb{Q}(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega\sqrt[3]{2}) = \mathbb{Q}(\omega, \sqrt[3]{2})$, where $\omega = e^{2\pi i/3}$.

2.3 Degrees of extensions

Theorem 2.2. If K/E and E/F are extensions, A is a basis of E/F, and B is a basis of K/E, then $AB \cong A \times B$ is a basis of K/F.

Proof. If $\gamma \in K$, then $\gamma = \sum c_j \beta_j$, where $c_j \in E$. Then $c_j = \sum d_{i,j} \alpha_i$, where $\alpha_i \in f$. So $\gamma = \sum_i \sum_j d_{i,j} \alpha_i \beta_j$. So AB spans K. If $\sum (\sum a_{i,j} \alpha_i) \beta_j = 0$, then $\sum a_{i,j} \alpha_i = 0$ for all j. Then $a_{i,j} = 0$ for all i, j.

Corollary 2.4. If K/E and E/F are finite, then [K:F] = [K:E][E:F].

Definition 2.7. Let $E, E' \subseteq K$ be subfields. The **compositum** EE' is the smallest subfield of K containing E and E'.

Example 2.4. If E/F, then $E(\alpha) = EF(\alpha)$.

Example 2.5. $F(\alpha, \beta) := F(\alpha)(\beta) = F(\alpha)F(\beta)$.

Proposition 2.3. If E, E' are finite over F and contained in K, A is a basis of E/F, and B is a basis of E'/F, teen AB spans EE'.

Proof. Let $A = \{\alpha_1, \ldots, \alpha_m\}$ and $B = \{\beta_1, \ldots, \beta_n\}$. Then $EE' = F(\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n) = F[\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n]$. Note that $\alpha_1^{i_1} \cdots \alpha_m^{i_m} \in E$ is a linear combination over F of the α_i s. Similarly for the β_j s in E'. So the $\alpha_i\beta_j$ s span EE'.

Corollary 2.5.

$$[EE':F] \le [E:F][E':F].$$

Corollary 2.6. If [E:F] and [E':F] are relatively prime, we get equality.

Proof. [E:F] and [E':F] divide [EE':F].

Example 2.6. Consider $\mathbb{Q}(\sqrt[3]{2}, \omega^3 \sqrt[3]{2})$, where $\omega^2 + \omega + 1 = 0$. Then

$$[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}][\mathbb{Q}(\omega^3\sqrt[3]{2}):\mathbb{Q}] = 9, \qquad [\mathbb{Q}(\sqrt[3]{2},\omega):\mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}][\mathbb{Q}(\omega):\mathbb{Q}] = 6.$$

Proposition 2.4. Let E_i be subfields of K containing F for all i in some index set I. The the compositum E of all E_i is $\bigcup F(\alpha_1, \ldots, \alpha_n)$, where $n \ge 0$, and each α_i is in some E_i .

3 Finite Fields and Cyclotomic Fields

3.1 Finite fields

Proposition 3.1. Let F be a field and $n \ge 1$. Let $\mu_n(F)$ be the n-th roots of unity in F. Then $\mu_n(F)$ is cyclic of order dividing n.

Proof. Let m be the exponent of $\mu_n(F)$. Then $x^m - 1 = 0$ for all $x \in \mu_n(F)$. So $|\mu_n(F)| \le m$. Then $|\mu_n(F)| = m$.

Lemma 3.1. Let F be a finite field. Then |F| is a power of char(F).

Proof. Let $p = \operatorname{char}(F)$. Then F is a vector space over \mathbb{F}_p . Then $|F| = p^{|F:\mathbb{F}_p|}$.

Corollary 3.1. If $|F| = p^n$, then F^{\times} is cyclic with $F^{\times} = \mu_{p^n-1}(F)$.

Corollary 3.2. $(\mathbb{Z}/p\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$.

Lemma 3.2. Let char(F) = p and $\alpha, \beta \in$. Then $(\alpha + \beta)^{p^k} = \alpha^{p^k} + \beta^{p^k}$.

Proof. This follows from the Binomial theorem.

Theorem 3.1. Let $n \ge 1$. Then there exists a unique extension \mathbb{F}_{p^n} of \mathbb{F}_p of degree n up to isomorphism. If E/\mathbb{F}_p is a finite extension of degree a multiple of n, then E contains a unique subfield isomorphic to \mathbb{F}_{p^n} . Moreover, $\mathbb{F}_{p^n} \subseteq \mathbb{F}_p^m \iff n \mid m$.

Proof. Let \mathbb{F}_{p^n} be the splitting field of $x^{p^n} - x$ over \mathbb{F}_p . Let $F = \{\alpha \in \mathbb{F}_{p^n} L\alpha^{p^n} = \alpha\}$. Note that F is closed under addition by the lemma and is closed under multiplication and taking inverses of nonzero elements. So F is a field. In fact, F is a splitting field of the polynomial, so $F = \mathbb{F}_{p^n}$.

We know that $|\mathbb{F}_{p^n}| \leq p^n$ because the polynomial $x^{p^n} - x$ has at most p^n roots; we want equality. Let $a \in \mathbb{F}_{p^n}^{\times}$. Consider the polynomial $g(x) = (x^{p^n} - x)/(x - a)$. Then $g(x) = \sum_{i=1}^{p^n-1} a^{i-1} x^{p^n-i}$. Then

$$g(a) = \sum_{i=1}^{p^n - 1} a^{p^n - 1} = (p^n - 1)a^{p^{n-1}} = (0 - 1)1 = -1 \neq 0.$$

So $x^{p^n} - x$ has p^n distinct roots, giving us $[\mathbb{F}_{p^n} : \mathbb{F}_p] = n$.

Let *E* have degree *m*, where $n \mid m$. Then $E \cong \mathbb{F}_{p^m}$, so $E^{\times} = \mu_{p^m-1}(E)$. Since $\mu_{p^m-1}(E) \subseteq \mu_{p^m-1}(E)$, we have $F \subseteq E$ with $F \cong \mathbb{F}_{p^n}$.

Example 3.1. $[\mathbb{F}_9 : \mathbb{F}_3] = 2$. We can compute that $x^2 + 1$, $x^2 + x - 1$, and $x^2 - x - 1$ are the quadratic irreducible polynomials over \mathbb{F}_3 . \mathbb{F}_9 is the splitting field of each. We get

$$x^{9} - x = (x^{2} + 1)(x^{2} + x - 1)(x^{2} - x - 1)x(x + 1)(x - 1).$$

Proposition 3.2. Let q be a power of p. Let $m \ge 1$, and let ζ_m be a primitive m-th root of unity in an extension of \mathbb{F}_q . Then $[\mathbb{F}_q(\zeta_m) : \mathbb{F}_q]$ equals the order of q in $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

Proof.

$$\ell = [\mathbb{F}_q(\zeta_m) : \mathbb{F}_q] \iff \mathbb{F}_q(\zeta_m) = \mathbb{F}_{q^\ell}$$
$$\iff m \mid q^\ell - 1 \text{ and } m \nmid q^{j-1} \text{ for all } j < \ell$$
$$\iff q \text{ has order } \ell \text{ in } (\mathbb{Z}/m\mathbb{Z})^{\times}.$$

Proposition 3.3. Let $m \ge 1$ and $m = p_1^{r_1} \cdots p_k^{r_k}$, where the p_i are distinct primes. Then $(\mathbb{Z}/m\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{r_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_k^{r_k}\mathbb{Z}) \times$, and

$$(\mathbb{Z}/p^{r}\mathbb{Z})^{\times} \cong \begin{cases} \mathbb{Z}/p^{r-1}\mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z} & p \text{ odd} \\ \mathbb{Z}/2^{r-2}\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & p = 2, r \ge 2. \end{cases}$$

Proof. The map $(\mathbb{Z}/p^r\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times}$ has kernel

$$\frac{1+p\mathbb{Z}}{1+p^r\mathbb{Z}} \subseteq (\mathbb{Z}/p^r\mathbb{Z})^{\times}.$$

If p is odd,

$$(1+p^k)^p = 1+p^{k+1}+\dots+(p^k)^p.$$

Then $kp > k+1 \iff k(p-1) > 1 \iff k \ge 2$ or $p \ge 3$. So if p is odd, then $(1+p^k)^p \cong 1+p^{k+1} \pmod{p^{k+2}}$. This argument gives us that 1+p has order p^{r-1} in $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$.

For p = 2, look at

$$\frac{1+4\mathbb{Z}}{1+2^r\mathbb{Z}}.$$

Then $(1+4)^{2^i} \cong 1+2^{i+2} \pmod{2^{i+3}}$. So 1+4 has order 2^{r-2} . This gives us that $\mathbb{Z}/2^r\mathbb{Z} = \langle -1 \rangle + (1+4\mathbb{Z})/(1+2^r\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{r-2}\mathbb{Z}$.

3.2 Cyclotomic fields and polynomials

Let ζ_n be a primitive *n*-th root of 1 in an extension of \mathbb{Q} (e.g. $\zeta_n = 2^{\pi i/n} \in \mathbb{C}$) such that $\zeta_n^{n/m} = \zeta_m$ for all $m \mid n$.

Definition 3.1. $\mathbb{Q}(\zeta_n)$ is the *n*-th cyclotomic field over \mathbb{Q} .

Remark 3.1. $\mathbb{Q}(\zeta_n) = \mathbb{Q}(\mu_n)$, where μ_n is the set of *n*-th roots of unity in \mathbb{C} .

Definition 3.2. The *n*-th cyclotomic polynomial Φ_n is the unique monic polynomial in $\mathbb{Q}[x]$ with roots the primitive *n*-th roots of 1.

Note that

$$\Phi_n = \prod_{\substack{i=1\\(i,n)=1}}^n (x - \zeta_n^i),$$
$$x^n - 1 = \prod_{\substack{d|n\\d \ge 1}} \Phi_d.$$

So $\Phi_n \in \mathbb{Q}[x]$ by induction. The degree of Φ_n is $\varphi(n) = |\{1 \le i \le n : (i, n) = 1\}|.$

4 Möbius Inversion, Cyclotomic Polynomials, and Field Embeddings

4.1 Möbius inversion and cyclotomic polynomials

Definition 4.1. The Möbius function $\mu : \mathbb{Z}_{\geq 1} \to \{-1, 0, 1\}$ is given by

$$\mu(n) = \begin{cases} (-1)^k & n \text{ is a product of } k \text{ distinct primes} \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 4.1. For $n \geq 2$,

$$\sum_{d|n} \mu(d) = 0$$

Proof. First,

$$\sum_{d|n} \mu(d) = \sum_{d|m} \mu(d),$$

where m is the product of the distinct primes dividing n. Say there are k of them. Then

$$\sum_{d|m} \mu(d) = 1 - k + \binom{k}{2} + \dots + (-1)^k = (1-1)^k = 0.$$

Theorem 4.1 (Möbius inversion formula). Let A be an abelian group, and let $f : \mathbb{Z}_{\geq 1} \to A$. Define $g : \mathbb{Z}_{\geq 1} \to A$ by $g(n) = \sum_{d|n} f(d)$. Then

$$f(n) = \sum_{d|n} \mu(d)g(n/d).$$

Proof. By the lemma,

$$\sum_{d|n} \mu(n/d)g(d) = \sum_{d|n} \sum_{k|d} \mu(n/d)f(k)$$
$$= \sum_{k|n} \sum_{\substack{d|n \\ k|d}} \mu(n/d)f(k)$$
$$= \sum_{k|n} \left(\sum_{c|n/k} \mu((n/k)/c)\right)f(k)$$
$$= f(n).$$

Corollary 4.1.

$$\Phi_n = \prod_{d|n} (x^d - 1)^{\mu(n/d)}.$$

Proof. Let $A = \mathbb{Q}(x)^x$, and let f send $d \mapsto \Phi_d$. Then

$$g(n) = \prod_{d \ midn} \Phi_d = x^n - 1$$

Now apply the Möbius inversion formula.

Example 4.1. $\Phi_1 = x - 1$, $\Phi_2 = x + 1$, and $\Phi_p = x^{p-1} + x^{p-2} + \cdots + x + 1$, where p is prime. If $p \mid n$, then $\Phi_{pn}(x) = \Phi_n(x^p)$. This also gives us that

$$\Phi_{p^n} = x^{p^{n-1}(p-1)} + \dots + x^{p^{n-1}} + 1.$$

If $p \neq q$ are primes,

$$\Phi_{pq}(x) = \frac{\Phi_q(x^p)}{\Phi_q(x)}$$
$$\frac{(x^{pq} - 1)(x - 1)}{(x^p - 1)(x^q - 1)} = \frac{\Phi_q(x^p)}{\Phi_q(x)}.$$
$$\Phi_{15} = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1.$$

Theorem 4.2. Φ_n is irreduible in $\mathbb{Q}[x]$.

Proof. Suppose $\Phi_n = fg$ with f a monic irreducible polynoimal, and let ζ be a root of f. For $p \nmid n$ prime, ζ^p is a root of Φ_n . If ζ^p is a root of g, then $g(x^p)$ has ζ as a root, so $f(x) \mid g(x^p)$. Reduce f and $g \pmod{p}$. We get $\overline{f}, \overline{g} \in \mathbb{F}_p[x]$. Then $\overline{g}(x^p) = \overline{g}(x)^p$. Then $\overline{f} \mid \overline{g}^p$, but \overline{f} has no multiple roots in \mathbb{F}_p , so $\overline{f} \mid \overline{g}$. So Φ_n has multiple roots $(\mod p)_i$ which is a contradiction. So ζ^p is a root of f. Therefore, ζ^a is a root of f for all $a \in \mathbb{Z}$ and $\gcd(a, n) = 1$, so $f = \Phi_n$.

4.2 Field embeddings

Definition 4.2. If E, E'/F and $\varphi : E \to E'$ is an isomorphism, we sat that φ fixes F if $\varphi|_F = \mathrm{id}_F$. Elements $\alpha \in E$ and $\beta \in E'$, are **conjugate** over F if there exists an isomorphism $\varphi : F(\alpha) \to F(\beta)$ fixing F with $\varphi(\alpha) = \beta$.

Proposition 4.1. Let E, E'/F. Elements $\alpha \in E$, $\beta \in E'$ are conjugate over F if and only if they have equal minimal polynomials in F[x].

Proof. Let α, β be conjugate over F. Then $\varphi(g(\alpha)) = g(\beta)$ for all $g \in F[x]$. Then α, β have the same minimal polynomial (α is a root of g(x) iff β is a root of g(x)).

If α, β have the same minimal polynomial $f \in F[x]$, then $F[x]/(f) \cong F(\alpha)$ via $x \text{ mapsto}\alpha$ and $F[x]/(f) \cong F(\beta)$ via $x \text{ mapsto}\beta$.

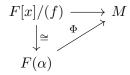
Example 4.2. The roots of $x^2 + 1$ are ± 1 . There exists a field automorphism $\mathbb{C} \to \mathbb{C}$ $i \mapsto -i$ fixing \mathbb{R} , namely, complex conjugation.

Definition 4.3. A field embedding is a ring homomorphism of fields (necessarily injective). If $\varphi : F \to M$ is an embedding and E/F is an extension, then $\Phi : E \to M$ extends φ if $\Phi|_F = \varphi$.

Example 4.3. Let $\iota : \mathbb{Q} \to \mathbb{R}$ be the natural inclusion map. There are two field embeddings extending ι ; these are $\mathbb{Q}(\sqrt{2} \to \mathbb{R} \text{ sending } \sqrt{2} \mapsto \sqrt{2}$. There are no extensions to $\mathbb{Q}(i) \to \mathbb{R}$.

Theorem 4.3. Let E/F be an extension, and let $\alpha \in E$ be algebraic over F. Let $\varphi : F$ to M be an embedding, and let $\tilde{\varphi} : F[x] \to M[x]$ be the induced map. Let f be the minimal polynomial of α . Then the extensions $\Phi : F(\alpha) \to M$ of φ are in 1-1 correspondence with the roots of $\tilde{\varphi}(f)$ in M via $\Phi \mapsto \Phi(\alpha)$.

Proof. If $\tilde{p}(f)$ has a root β in M, let ev_{β} be evaluation at β . Consider $e_{\beta} \circ \tilde{\varphi} : F[x] \to M$. Then $\ker(e_{\beta} \circ \tilde{\varphi}_{\supset}(f))$. Since we are working in a PID, this is equality. We get



where $\Phi(\alpha) = \beta$.

If $\Phi: F(\alpha) \to M$ extends φ , then write $f = \sum_{i=0}^{n} c_i x^i$, where $n = \deg(f)$. Then

$$\tilde{\varphi}(f)(\Phi(\alpha)) = \sum_{i=0}^{n} \varphi(c_i) \Phi(\alpha)^i = \Phi(\sum_{i=0}^{n} c_i \alpha^i) = \Phi(f(\alpha)) = 0.$$

Corollary 4.2. Let E/F be finite, and let $\varphi : F \to M$ be a field embedding. The number of extensions of φ to $E \to M$ is $\leq [E : F]$.

Proof. Induct on the degree. If $E = F(\alpha)$, then the number of roots of $\operatorname{irr}_F(\alpha)$ in M is $\leq [F(\alpha) : F]$. Then the number of extensions is $\leq [F(\alpha) : F]$ by the theorem. Consider extensions of these; the number for each is $\leq [E : f(\alpha)]$ by induction. So the number is $\leq [E : F]$.

Example 4.4. We can extend $\iota : \mathbb{Q} \to \mathbb{R}$ to $\varphi : \mathbb{Q}(\sqrt{2}, \sqrt{3}) \to \mathbb{R}$ in 4 ways. However, there is only one way to embed $\mathbb{Q}(\sqrt[3]{2}) \to \mathbb{R}$ because $x^3 - 2 = (x - \sqrt[3]{2}) \cdot (\deg(2))$ in $\mathbb{R}[x]$.

Proposition 4.2. Let E/F be algebraic, and let $\sigma : E \to E$ be an embedding fixing F. Then σ is an isomorphism.

Proof. For any $\beta \in E$, let f be its minimal polynomial. The restriction to the finite set of roots σ : {roots of f in E} \rightarrow {roots of f in E} is a bijection (as it is injective). So $\beta \in im(\sigma)$.

5 Algebraic Closure

5.1 Algebraically closed fields

Definition 5.1. A polynomial splits in L[x] if it factors in L[x] as a product of linear polynomials.

Definition 5.2. A field L is **algebraically closed** if every nonconstant polynomial in L[x] has a root in L.

Proposition 5.1. If L[x] is algebraically closed, then every (nonconstant) polynomial in L[x] splits over L.

Corollary 5.1. If M is an algebraic extension of an algebraically closed field L, then M = L.

Theorem 5.1 (fundamental theorem of algebra). \mathbb{C} is algebraically closed.

Here is a proof that uses no algebra.

Proof. Let $f \in \mathbb{C}[x]$ have no roots in \mathbb{C} . Then 1/f is holomorphic on \mathbb{C} . Moreover, 1/f is bounded. So 1/f is constant by Liouville's theorem. Thus, f is constant. \Box

Theorem 5.2. Let E/F be algebraic, and let $\varphi : F \to M$ be a field embedding with M algebraically closed. Then there exists a field embedding $\Phi : E \to M$ extending φ .

Proof. Let $X = \{(K, \sigma) : E/K/F, \sigma : K \to M \text{ is an embedding extending } \varphi\}$. Then $(K, \sigma) \leq (K', \sigma')$ if $K \subseteq K'$ and $\sigma'|_K = \sigma$ defines a partial order on X. Let |mcC| be a chain in X. Then $L = \bigcup_{K \in \mathcal{C}} K$ with $\tau : L \to M$ defined as $\tau|_K = \sigma$ for each $K \in \mathcal{C}$ is an upper bound for \mathcal{C} . By Zorn's lemma, we have a maximal element (Ω, Φ) .

We want to show that $\Omega = E$. Let $\alpha \in E$, and let $f \in \Omega[x]$ be its minimal polynomial $f(x) = \sum_{i=1}^{n} a_i x^i$, where $n = \deg(f)$. Define $g := \sum_{i=1}^{n} \Phi(a_i) x^i \in M[x]$. *M* is algebraically closed, so *g* has a root $\beta \in M$. So there exists $\tilde{\Phi} : \Omega(\alpha) \to M$ with $\tilde{\Phi}|_{\Omega} = \Phi$ and $\alpha \mapsto \beta$. Then $(\Omega(\alpha), \tilde{\Phi}) \ge (\Omega, \Phi)$. So $\alpha \in \Omega$, as (Ω, Φ) is maximal. \Box

Proposition 5.2. The set of all algebraic elements over F in an extension E/F is a subfield of E, the largest intermediate field that is algebraic over F.

Proof. Let M be the set of algebraic elements over F in E. Let $\alpha, \beta \in M$. Then $F(\alpha, \beta)/F$ is finite, so it contains $\alpha - \beta$ and α/β if $\beta \neq 0$, and $F(\alpha, \beta) \subseteq M$. \Box

Corollary 5.2. The set $\overline{\mathbb{Q}}$ of algebraic numbers in \mathbb{C} is a subfield of \mathbb{C} .

5.2 Algebraic closure

Definition 5.3. An algebraic closure of a field F is an algebraic, algebraically closed extension of F.

Proposition 5.3. Let K/E/F. Then K/F is algebraic if and only if K/E and E/F are algebraic.

Proof. (\Leftarrow): Take $\alpha \in K$, and let $f \in E[x]$ be its minimal polynomial, $f = \sum_{i=0}^{n} a_i x^i$, where $a_i \in E$. Each of these a_i is algebraic over F. Then $F(a_0, \ldots, a_n)(\alpha)$ is finite over F, so every element in it is algebraic over F, so α is algebraic over F.

Proposition 5.4. If F is a field and M/F is algebraically closed, then M contains a unique algebraic closure of F, the maximal subfield \overline{F} of M which is algebraic over F.

Proof. Suppose $f \in \overline{F}[x]$, and look at E/F, generated by the coefficients of f. E/F is finite. If $\alpha \in M$ is a foot of f, then $E(\alpha)/F$ is algebraic by the previous proposition, so α is algebraic over F. Then $\alpha \in \overline{F}$.

Corollary 5.3. $\overline{\mathbb{Q}}$ is an algebraic closure of \mathbb{Q} .

Example 5.1. $\overline{\mathbb{F}}_p := \bigcup_{n=1}^{\infty} \mathbb{F}_{p^n}$ is an algebraic closure of \mathbb{F}_p . This union makes sense because $\mathbb{F}_{p^k}, F_{p^\ell} \subseteq F_{p^m}$, where $m = \operatorname{lcm}(k, \ell)$.

Theorem 5.3. Every field F has an algebraic closure.

Proof. Let F be a field, $\Omega = \prod_f R_f$, where f runs over monic irreducible polynomials in F[x] and R_f is a finite set with one element for each root of f in a splitting field. Then $F \subseteq \Omega$ because a is the unique root of x - a. Let $X = \{E/F \text{ algebraic} : E \subseteq \Omega, \alpha \in E\}$. Such an $\alpha \in R_f$, where f is in the minimal polynomial of α . $X \neq \emptyset$, since $F \in X$.

Let \mathcal{C} be a chain in X, and let $K = \bigcup_{E \in \mathcal{C}} E \subseteq \Omega$. Check yourself that $K \in X$. So \mathcal{C} has an upper bound. By Zorn's lemma, we have a maximal element $\overline{F} \in X$. Since $\overline{F} \in X$, it is algebraic. We claim that \overline{F} is algebraically closed. Let $f \in F[x]$ and $g \in \overline{F}[x]$ be monic and irreducible with $g \mid f$. $E = \overline{F}[x]/(g) \subseteq \Omega$ as follows: if $h \in F[x]$ is monic and irreducible with a root in E, then the distinct roots of h in $E \setminus \overline{F}$ inject into elements of $R_h \setminus \overline{F}$. By maximality, $E = \overline{F}$. So \overline{F} is algebraically closed.

Proposition 5.5. If M, M' are algebraic closures of F then there exists an isomorphism $\Phi: M \to M'$ fixing F.

Proof. We have an embedding $F \to M'$. There exists a $\Phi : M \to M'$ extending this inclusion. It suffices to show that $\operatorname{im}(\Phi)$ is algebraically closed. If $\alpha \in M$ is a root of $f \in F[x]$, it maps to a root of $\Phi(\alpha)$ of f in $\Phi(M) \subseteq M'$. So $\Phi(M)$ is algebraically closed, and hence $\Phi(M) = M$.

6 Transcendental Extensions and Separability

6.1 Transcendental extensions

Definition 6.1. An extension K/F is **purely transcendental** if every $\alpha \in K \setminus F$ is transcendental over F.

Proposition 6.1. $F((t_i)_{i \in I})$, where I is an indexing set, is purely transcendental over F.

Proof. Here is the case of F(t)/F. Let $\alpha = f/g \in F(t) = F$, where $f, g \in F[t]$, and $g \neq 0$. Then $\alpha g(x) \notin F[x]$, but $\alpha g(x) \in F(t)[x]$. Then $\alpha g(x) \neq f(x) \in F[x]$. But $f(xx) - \alpha g(x)$ has a root t, so t is algebraic over $F(\alpha)$. But t is transcendental over F, so α must be transcendental over F. Thus, F(t)/F is purely transcendental.

For the case of $F(t_1, \ldots, t_n)/F$, proceed by induction. For the general case, every element in $F((t_i)_{i \in I})$ is in $F(t_1, \ldots, t_n)$ for some $i_1, \ldots, i_n \in I$. If it is not in F, it is transcendental by the previous case.

Proposition 6.2. Every field extension is a purely transcendental extension of an algebraic extension.

Proof. Let K/F, and let E be the maximal algebraic extension of F in K. If $\alpha \in K$ is algebraic over E, it is algebraic over F, so $\alpha \in E$. So K/E is purely transcendental. \Box

Example 6.1. Let F be a field, and let \overline{F} be an algebraic closure. Then $\overline{F}(t)/\overline{F}$ is purely transcendental. We can do it the other way around, as well. $\overline{F}(t)/F(t)$ is algebraic, while F(t)/F is purely transcendental.

Definition 6.2. A subset $S \subseteq K$ for K/F is **algebraically independent** over F if for all nonzero $f \in F[x_1, \ldots, x_n]$ and distinct $s_1, \ldots, s_n \in S$, $f(s_1, \ldots, s_n) \neq 0$.

Here are some lemmas about algebraically independent sets. The proofs are the same as the corresponding properties of linearly independent sets.

Lemma 6.1. Let $S \subseteq K$ be algebraically independent over F. Then $t \in K$ is transcendental over F(S), where F(S) is the smallest subfield of K generated by S over F, if and only if $S \cup \{t\}$ is algebraically independent over F.

Lemma 6.2. $S \subseteq K$ is algebraically independent over F if and only if every $s \in S$ is transcendental over $F(S \setminus \{s\})$.

Definition 6.3. A subset S of K is a **transcendence basis** for K/F if it is algebraically independent over F and if K/F(S) is algebraic.

Example 6.2. Let $\overline{F}(t)/F$. $\{r\}$ is a transcendence basis, and in fact, $\{t^{1/n}\}$ is a trascendence basis for any n. However $\{t^{1/2}, t^{1/3}\}$ is not because it is not algebraically independent: $(t^{1/2})^2 = (t^{1/3})^3$.

The previous two lemmas imply the following lemma.

Lemma 6.3. Let $S \subseteq K$. The following are equivalent:

- 1. S is a trascnece basis for K/F.
- 2. S is a maximal F-algebraically independent subset of K.
- 3. S is a minimal subset of K such that K is algebraic over F(S).

Proof. The first two statements are equivalent by the first lemma. The latter two statements are equivalent by the second. \Box

Theorem 6.1. Every *F*-algebraicly independent subset of *K* is contained in a transcendence basis, and every $S \subseteq K$ such that K/F(s) is algebraic contains a transcendence basis.

The proof is the same argument as the corresponding statement in linear algebra.

Corollary 6.1. Every field extension has a transcendence basis. In particular, there exists an intermediate extension K/E/F such that K/E is algebraic and E/F is purely transencental.

Proof. Take E = F(S), where S is a transcendence basis.

Theorem 6.2. Any two transcendence bases of K/F have the same cardinality.

Again, the proof is the same as the corresponding proof in linear algebra.

Definition 6.4. The transcendence degree of K/F is the number of elements in a transcendence bases if finite. Otherwise, K/F has infinite transcendence degree.

6.2 Separability

Definition 6.5. Let $f \in F[x]$. The **multiplicity** of a root α of F in an algebraic closure of F is the highest power m such that $(x - \alpha)^m | f$ in $\overline{F}[x]$.

Example 6.3. The polynomial $x^p - t = (x - t^{1/p})^p$ in $\mathbb{F}_p(t^{1/p})[x]$. The multiplicity of $t^{1/p}$ is p.

Lemma 6.4. The multiplicity of a root odes not depend on the choice of \overline{F} and does not depend on the choice of root if f is irreducible.

Corollary 6.2. The number of distinct roots in \overline{F} of an irreducible polynomial $f \in F[x]$ divides deg(f).

Proof. Write $f = \prod_{i=1}^{k} (x - \alpha_i)^m$. Then $km = \deg(f)$.

Definition 6.6. We say that $f \in F[x]$ is **separable** if every root of f has multiplicity 1. An element $\alpha \in \overline{F}$ is **separable** if it is algebraic over F and its minimal polynomial over F is separable. An extension E/F is **separable** if every $\alpha \in E$ is separable over F.

Lemma 6.5. Let E/F be a field extension and $\alpha \in E$ be algebraic over F. Then α is separable over F if and only if $F(\alpha)/F$.

Proof. If $F(\alpha)/F$ is separable, then $\alpha \in F(\alpha)$, so α is separable over F. Conversely, suppose α is separable over F, and let $\beta \in F(\alpha)$. The number of embeddings of $F9\beta \int \overline{F}$ fixing F is $\leq [F(\beta) : F]$. Equality holds iff β is separable over F.

The number of embeddings $F(\alpha) \to \overline{F}$ is $[F(\alpha) : F]$. On the other hand, α is separable over $F(\beta)$, so the number of embeddings $F(\alpha) \to \overline{F}$ extending the embedding $F(\beta) \to \overline{F}$ equals $[F(\alpha) : F(\beta)]$. So the number of embeddings $F(\alpha) \to \overline{F}$ over F is the product of the number of embeddings $F(\beta) \to \overline{F}$ with the number of extensions of these embeddings to $F(\alpha) \to \overline{F}$. So the number of embeddings $F(\beta) \to \overline{F}$ fixing F is

$$\frac{[F(\alpha):F]}{[F(\alpha):F(\beta)]} = [F(\beta):F].$$

7 Inseparability and Perfect Fields

7.1 Towers of separable extensions

Proposition 7.1. Let E/F be finite, and let $\operatorname{Emb}_F(E)$ be the set of embeddings $\Phi: E \to \overline{F}$ fixing F. Then $|\operatorname{Emb}_F(E)|$ divides [E:F], with equality iff E/F is separable.

Proof. Let $e = |\operatorname{Emb}_F(E)|$ and $E = F(\alpha_1, \ldots, \alpha_n)$. Let $E_i = F(\alpha_1, \ldots, \alpha_{i=1})$, and let e_i be the number of embeddings in $\operatorname{Emb}_F(E_{i+1})$ extending an embedding in $\operatorname{Emb}_F(E_i)$. We know that $e_i \mid [E_{i+1} : E_i]$ and we get equality iff E_{i+1}/E_i is separable. This is because this is the number of distinct conjugates of α_i over E_i times the multiplicity (number of conjugates times multiplicity is the degree of the polynomial). Now $e = \prod_{i=1}^n e_i$, so E/F is separable.

If e = [E : F], take $\beta \in E$. The number of conjugates of $\beta \in \overline{F}$ is $d = |\operatorname{Emb}_F(F(\beta))|$, which divides $[F(\beta) : F]$. The number of extensions of any such embedding to $E \to \overline{F}$ divides $c = [E : F(\beta)]$. Now cd = e = [E : F], so $d = [F(\beta) : F]$, since d divides it and $c \mid [E : F(\beta)]$. Then $F(\beta)/F$ is separable.

Proposition 7.2. If K/E/F are salgebraic, and K/E and K/F is separable, then K/F is separable.

Proof. In the case of finite degree, this follows from the previous proposition. In general, any $\alpha \in K$ has minimal polynomial over E which has coefficients in a finite extension E'/F. So $E'(\alpha)/E'/F$ is finite, $E'(\alpha)/E'$ and E'/F are separable. So, by the finite case, α is separable over F. This is true for all $\alpha \in K$, so K/F is separable.

7.2 Purely inseparable extensions and degrees of separability and inseparability

Definition 7.1. An extension E/F is **purely inseparable** if every $\alpha \in E \setminus F$ is inseparable. Equivalently, E/F is separable it has no nontrivial intermediate separable extensions over F.

Example 7.1. $\mathbb{F}_p(x)/\mathbb{F}_p(x^p)$ is purely inseparable because it has degree p and because the minimal polynomial of x is $t^p - x^p = (t - x)^p$.

Corollary 7.1. The set of all separable elements in an extension K/F (call it E) is a field, and K/E is purely inseparable.

Definition 7.2. Suppose K/F is finite, and E is a maximal separable subextension. Then the **degree of separability** of K/F is $[K : F]_s = [E : F]$. The **degree of inseparability** if $[K : F]_i = [K : S]$.

Lemma 7.1. Let E/F is algebraic, $f \in E[x]$ be monic, and $m \ge 1$ such that $f^m \in F[x]$. Then either m = 0 in F or $f \in F[x]$. Proof. Let $f = \sum_{i=0}^{n} a_i x^i$ be monic, and suppose that $f \notin F[x]$. Let $i \leq n-1$ be maximal such that $a_i \notin F$. Let c be the coefficient of $x^{(m-1)n+i}$ in f^m . This is not in F, since c is a sum of terms all in F (involving only a_j with j > i and 1 term coming from $a_i a_n^{m-1} = a_i$). So $c - ma_i \in F$, which means $a_i \in F$ or m = 0 in F. But $a_i \notin F$.

Proposition 7.3. Let char(F) = p. If E/F is purely inseparable and $\alpha \in E$, then there exists a minimal $k \ge 0$ such that $\alpha^{p^k} \in F$, and the minimal polynomial of α is $x^{p^k} - \alpha^{p^k}$.

Proof. Let $\alpha \in E \setminus F$ have minimal polynomial $f = \prod_{i=1}^{d} (x - \alpha_i)^m \in \overline{F}[x]$. Of m > 1, then $f = g^m$ where $g = \prod_{i=1}^{d} (x - \alpha_i)$. Then $m = p^k t$, where $p \nmid t$, and $k \ge 1$ by the lemma. Then $f = (g^{p^k})^t \in F[x]$. So the lemma forces t = 1 since $p \nmid t$. Letting $a_i = \alpha_i^{p^k}$, we get $f = \prod_{i=1}^{d} (x^{p^k} - a_i)$. Then $f = h(x^{p^k})$, where $h = \prod_{i=1}^{d} (x - a_i) \in F[x]$. This is a separable polynomial, so $F(a_i)/F$ is separable for each *i*. Since E/F is purely inseparable, each $a_i \in F$. Since *F* is irreducible, we get d = 1. So $f = x^{p^k} - \alpha_i^{p^k}$.

Corollary 7.2. If E/F is finite and char(F) = p, then $[E/F]_i$ is a power of p.

Proposition 7.4. $[K:F]_s = |\operatorname{Emb}_F(K)|.$

Corollary 7.3. Degrees of separability and inseparability are multiplicative in extensions.

7.3 Perfect fields

Definition 7.3. A field is **perfect** if every algebraic extension of it is separable.

Example 7.2. \mathbb{F}_p is perfect. Finite extensions are \mathbb{F}_{p^n} , which is generated by the roots of $x^{p^n} - x$, which has p^n distinct roots. So these extensions are separable.

Theorem 7.1. Every field of characteristic 0 is perfect.

Proof. Let char(F) = 0. Then every irreducible monic polynomial is $f = \prod_{i=1}^{d} (x - \alpha_i)^m \in \overline{F}[x]$. Then $f = g^m$, where $g \in \overline{F}[x]$. So $g \in F[x]$ by the lemma. Since f is irreducible, m = 1.

7.4 The primitive element theorem

Definition 7.4. An extension E/F is simple if $E = F(\alpha)$ with $\alpha \in E$. Here, α is called a primitive element for E/F.

Theorem 7.2 (primitive element theorem). Every finite separable extension is simple.

Proof. If $F = \mathbb{F}_q$, then \mathbb{F}_{q^n} , where $\mathbb{F}_q(\xi)$, where ξ is the primitive $(q^n - 1)$ -th root of 1. Now we may assume that F is an infinite field. It suffices to show that any $F(\alpha, \beta)/F$ (with α, β algebraic) is simple. Look at $\gamma := \alpha + c\beta$ for $c \in F \setminus \{0\}$. Since F is infinite, we can choose $c \neq (\alpha' - \alpha)/(\beta' - \beta)$, where α' is a conjugate of α and same for β . Then $\gamma \neq \alpha' + c\beta'$ for all such α', β' . Let f be the minimal polynomial of α , and let $h(x) = f(\gamma - cx) \in F(\gamma)[x]$. Now $h(\beta) = f(\alpha) = 0$. Then h does not have any other β' as a root. We will finish this next time.

8 Normal Extensions, Galois Extensions, and Galois Groups

8.1 The primitive element theorem

Let's complete the proof from last time.

Theorem 8.1 (primitive element theorem). Every finite, separable extension is simple.

Proof. If $F = \mathbb{F}_q$, then \mathbb{F}_{q^n} , where $\mathbb{F}_q(\xi)$, where ξ is the primitive $(q^n - 1)$ -th root of 1. Now we may assume that F is an infinite field. It suffices to show that any $F(\alpha, \beta)/F$ (with α, β algebraic) is simple. Look at $\gamma := \alpha + c\beta$ for $c \in F \setminus \{0\}$. Since F is infinite, we can choose $c \neq (\alpha' - \alpha)/(\beta' - \beta)$, where α' is a conjugate of α and same for β . Then $\gamma \neq \alpha' + c\beta'$ for all such α', β' . Let f be the minimal polynomial of α , and let $h(x) = f(\gamma - cx) \in F(\gamma)[x]$. Now $h(\beta) = f(\alpha) = 0$, and $h \in F(\gamma)[x]$. But $h(\beta') = f(\gamma - c\beta) \neq 0$ for all β' conjugate (but not equal) to β . If $g \in F[x]$ is the minimal polynomial of β , then since it and h share just one root, β , in $F(\gamma)$, the minimal polynomial of β is $x - \beta$. Then $\beta \in F(\gamma)$, which gives $\alpha \in F(\gamma)$. So $F(\gamma) = F(\alpha, \beta)$.

Remark 8.1. Where does separability come into play during the proof? We used that g is separable to show that $g(x) \neq (x - \beta)^k$ for k > 1.

8.2 Normal extensions

Definition 8.1. An algebraic extension E/F is **normal** if it is the splitting field of some set of polynomials in F[x].

Example 8.1. $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is not normal. The minimal polynomial of $\sqrt[4]{2}$, $x^4 - 2$, has roots not in $\mathbb{Q}(\sqrt[4]{2})$. However, the extension $\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q}$ is normal.

Lemma 8.1. If K/F is normal, then so is K/E for any intermediate E.

Theorem 8.2. An algebraic extension E/F is normal if and only if every embedding $\Phi: E \to \overline{F}$ (where $\overline{F} \subseteq E$) fixing F satisfies $\Phi(E) = E$.

Proof. Let E/F be normal, and say it is the splitting field of $S \subseteq F[x]$. Suppose $\Phi : E \to \overline{F}$ is an embedding fixing F. Let $\alpha \in E$. Then $\Phi(\alpha) = \beta$, where β is conjugate to α over F. So $\beta \in E$, so $\Phi(E) \subseteq E$. Then $\Phi(E) = E$.

Suppose that $\Phi(E) = E$ for all Φ , and let $\alpha \in E$ have minimal polynomial f. Given $\beta \in \overline{F}$ that is a root of f, there exists Φ such that $\Phi(\alpha) = \beta$. Therefore, $\beta \in E$. So in particular, E is the splitting field of all minimal polynomials in F[x] with a root in E. \Box

Corollary 8.1. IF E/F is normal and $f \in F[x]$ has a root in E, then f splits in E.

Proposition 8.1. If $E, K \subseteq \overline{F}$ are normal over F, then so is the compositum EK.

Proof. E is the splitting field of S. K is the splitting field of T. Then EK is the splitting field of $S \cup T$.

Here is an alternative proof.

Proof. If $\varphi \in \text{Emb}_F(EK)$, then since $\varphi(E) = E$ and $\varphi(K) = K$, $\varphi(EK) = EK$.

8.3 Galois groups and extensions

Definition 8.2. The **Galois group** Gal(E/F) of a normal extension E/F is the group of field automorphisms $E \to E$ fixing F.

Sometimes, we may write $\operatorname{Gal}(E/F) = \operatorname{Aut}_F(E) \subseteq \operatorname{Aut}(E)$.

Remark 8.2. $|\operatorname{Gal}(E/F)| = [E:F]_s$. This equals the degree when E/F is separable.

Definition 8.3. An extensions E/F is **Galois** if it is normal and separable.

Remark 8.3. If E/F is finite, then E/F is Galois iff it is normal and $|\operatorname{Gal}(E/F)| = [E:F]$.

Example 8.2. Last time, we showed that $\mathbb{F}_{q^n}/\mathbb{F}_q$ is separable. \mathbb{F}_{q^n} is the splitting field of $x^{q^n} - x$, which is separable, so \mathbb{F}_{q^n} is Galois. The **Frobenius element** $\varphi_q \in \text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$ is defined by $\varphi_q(\alpha) = \alpha^q$. This is a field homomorphism; it is an additive homomorphism because we are in characteristic q. What are the other elements of $\text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$?

Proposition 8.2. Gal $(\mathbb{F}_{q^n}/\mathbb{F}_q) = \langle \varphi_q \rangle \cong \mathbb{Z}/n\mathbb{Z}.$

Proof. The automorphism $\varphi_q^k(\alpha) = \alpha^{q^k}$ fixes \mathbb{F}_{q^n} iff $n \mid k$. So its order is n. The Galois group has order n, so this must be a cyclic group.

Example 8.3. $\mathbb{F}_p(t^{1/p})/\mathbb{F}_q(t)$ is purely inseparable. If $\sigma \in \operatorname{Aut}_{\mathbb{F}_q(t)}(\mathbb{F}_q(t^{1/p}))$, then $\sigma(t) = t$. So $\sigma(t^{1/p})^p = \sigma(t) = t$. Then $\sigma(t^{1/p}) = t^{1/p}$. That is, $\operatorname{Aut}_{\mathbb{F}_q(t)}(\mathbb{F}_q(t^{1/p}))$ is trivial.

Example 8.4. Recall that the cyclotomic polynomial Φ_n is irreducible. Then $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n)$. Let K be a field of characteristic $\nmid n$. Define the *n*-th **cyclotomic character** $\chi_n : \operatorname{Gal}(K(\zeta_n)/K) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ sending $\sigma \mapsto a \pmod{n}$, where $\sigma(\zeta_n) = \zeta_n^a$. We can also say it like this: $\sigma(\zeta_n) = \zeta_n^{\chi_n(\sigma)}$. This is a homomorphism because

$$\zeta_n^{\chi_n(\sigma\tau)} = \sigma(\tau(\zeta_n)) = \sigma(\zeta_n^{\chi_n(\tau)}) = \sigma(\zeta_n)^{\chi_n(\tau)} = \zeta_n^{\chi_n(\sigma)\chi_n(\tau)}.$$

This is injective because χ_n is determined on σ by what power σ raises ζ_n to.

Proposition 8.3. The map $\chi_n : \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ is an isomorphism.

Proof. The Galois group has order $\varphi(n)$, the same as the order of $(\mathbb{Z}/n\mathbb{Z})^{\times}$. We already showed that χ_n is injective.

8.4 Fixed fields

Definition 8.4. The fixed field of a field *E* by a subgroup *G* of Aut(*E*) is the field $E^G = \{ \alpha \in E : \sigma \cdot \alpha = \alpha \, \forall \sigma \in G \}.$

Proposition 8.4. If if K/F is Galois, then $K^{\text{Gal}(K/F)} = F$.

Proof. (\supseteq): F is fixed by every $\sigma \in \text{Gal}(K/F)$.

(\subseteq): If $\alpha \in K^{\operatorname{Gal}(K/F)}$, then for all $\sigma \in \operatorname{Gal}(K/F)$, $\sigma \cdot \alpha = \alpha$. But this means that α is the only root of its minimal polynomial in K by normality. Separability gives us that the minimal polynomial is $x - \alpha$. Therefore, $\alpha \in F$.

Let K/F is finite and Galois, let E be intermediate, and let $\sigma \in \text{Gal}(K/F)$. We can consider the restriction $\sigma|_E : E \to \sigma(E)$. If E is normal over F, then this gives a map $\text{Gal}(K/F) \to \text{Gal}(E/F)$.

Lemma 8.2. Let K/F be Galois and E be intermediate. The restriction map res_E : $\operatorname{Gal}(K/F)/\operatorname{Gal}(K/E) \to \operatorname{Emb}_F(E)$ is a bijection. If E/F is Galois, then this is an isomorphism of groups.

Proof is left as an exercise.¹

¹Why, Professor Sharifi? Why?

9 The Fundamental Theorem of Galois Theory

9.1 Restriction of automorphisms and the Galois group over a fixed field

Here, assume all extensions K/F will lie in \overline{F} .

Proposition 9.1. If K/F is Galois and E is intermediate, then there exits a bijection of left $\operatorname{Gal}(K/F)$ -sets $\operatorname{res}_F : \operatorname{Gal}(K/F)/\operatorname{Gal}(K/E) \to \operatorname{Emb}_F(E)$ sending $\sigma \operatorname{Gal}(K/E) \mapsto \sigma|_E$. Moreover, E/F is Galois if and only if $\operatorname{Gal}(K/E)$ is normal in $\operatorname{Gal}(K/F)$, in which case res_F is an isomorphism of groups.

Proof. If $\sigma \in \operatorname{Gal}(K/F)$ and $\tau \in \operatorname{Gal}(K/F)$, then

$$\sigma\tau|_E = \sigma|_E \iff \sigma_\tau(\alpha) = \sigma(\alpha) \ \forall \alpha \in E$$
$$\iff \tau(\alpha) = \alpha \ \forall \alpha \in E$$
$$\iff \tau \in \operatorname{Gal}(K/E).$$

To show that this is onto, every $\varphi \in \text{Emb}_F(E)$ lifts to $\sigma : K \to \overline{F}$, but this takes values in K since K/F is normal. So $\sigma \in \text{Gal}(K/F)$. If $|rho \in \text{Gal}(K/F)$, then

$$\operatorname{res}_F(\rho\sigma\operatorname{Gal}(K/E)) = \rho\sigma|_E = \rho\circ\sigma|_E = \rho\circ\operatorname{res}_F(\sigma\operatorname{Gal}(K/E)).$$

If E/F is Galois, then $\operatorname{Gal}(K/F) \to \operatorname{Gal}(E/F)$ sending $\sigma \mapsto \sigma|_E$ has kernel $\operatorname{Gal}(K/E)$, so it is normal.

Conversely, if $\operatorname{Gal}(K/E) \trianglelefteq \operatorname{Gal}(K/F)$, take $\varphi \in \operatorname{Emb}_F(E)$, and $\sigma \in \operatorname{Gal}(K/F)$ lifting φ . Then for all $\tau \in \operatorname{Gal}(K/E)$, $\sigma^{-1}\tau\sigma|_E = 1$. By normality, $\tau\sigma|_E = \sigma|_E$. So $\sigma(E)$ is fixed by τ . So $\sigma(E) \subseteq E$, the fixed field of τ . So $\sigma(E) = E$, so E/F is Galois.

Proposition 9.2. Let K/F be finite and Galois, and let $H \leq \text{Gal}(K/F)$. Then the Galois group $\text{Gal}(K/K^H) = H$.

Proof. H fixes K^H , so $H \leq \operatorname{Gal}(K/K^H)$. K/K^H is separable, so by the primitive element theorem, there exists $\theta \in K$ such that $K = K^H(\theta)$. Then $f = \prod_{\sigma \in H} (x - \sigma(\theta)) \in K^H[x]$. The minimal polynomial of θ over K^H divides f, so $[K : K^H] \leq \operatorname{deg}(f) = |H|$. This forces $H = \operatorname{Gal}(K/K^H)$.

9.2 The Galois correspondence

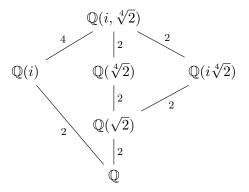
Theorem 9.1 (Fundamental theorem of Galois theory). Let K/F be finite, Galois. There are inclusion-reversing inverse bijections $\psi : \{E : K/E/F\} \rightarrow \{H : H \leq \operatorname{Gal}(K/F)\}$ and $\theta : \{H : H \leq \operatorname{Gal}(K/F)\} \rightarrow \{E : K/E/F\}$ such that $\psi(E) = \operatorname{Gal}(K/E)$, and $\theta(H) = K^H$. For such E/H, $[K : E] = |\operatorname{Gal}(K/E)|$, and $|H| = [K : K^H]$. These restrict to bijections between normal extensions of K and normal subgroups of $\operatorname{Gal}(K/F)$. If E/F is normal, we have the bijection $\operatorname{Gal}(K/F)/\operatorname{Gal}(K/E) \rightarrow \operatorname{Emb}_F(E)$, sending $\sigma \operatorname{Gal}(K/E) \mapsto \sigma|_E$. *Proof.* We have proved almost all the statements. We verify

$$\psi(\theta(H)) = \psi(K^H) = \operatorname{Gal}(K/K^H) = H,$$

$$\theta(\psi(E)) = \theta(\operatorname{Gal}(K/E)) = K^{\operatorname{Gal}(K/E)} = E.$$

Example 9.1. The splitting field of $x^4 - 2$ over \mathbb{Q} is $K = \mathbb{Q}(\sqrt[4]{2}, i)$. The polynomial $x^4 - 2$ is irreducible over $\mathbb{Q}(i)$. There exists $\tau \in \operatorname{Gal}(K/\mathbb{Q}(i)) \cong \mathbb{Z}/4\mathbb{Z}$ with $\tau(\sqrt[4]{2}) = i\sqrt[4]{2}$; this generates $\operatorname{Gal}(K/\mathbb{Q}(i))$. The $\operatorname{Gal}(K/\mathbb{Q}(\sqrt[4]{2})) \ni \sigma$ such that $\sigma(i) = -i$ and $\sigma(\sqrt[4]{2}) = \sqrt[4]{2}$. We can check that $\sigma\tau\sigma^{-1}(\sqrt[4]{2}) = -i\sqrt[4]{2} = \tau^{-1}(\sqrt[4]{2})$. So $\sigma\tau\sigma^{-1} = \tau^{-1}$. Then $\operatorname{Gal}(K/\mathbb{Q}) \cong$ $\mathbb{Z}/4\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z} \cong D_4.$

Here is a diagram of some of the intermediate fields.



Proposition 9.3. Let K be finite and Galois over F, and let E/F be algebraic. Then the map $\operatorname{res}_K : \operatorname{Gal}(EK/E) \to \operatorname{Gal}(K/K \cap E)$ sending $\sigma \mapsto \sigma|_K$ is an isomorphism.

Proof. Let $\sigma \in \text{Gal}(EK/E)$. Then σ fixes E, so $\sigma|_K$ fixes $K \cap E$. If $\sigma|_K = 1$, then σ dixes E and K, so σ fixes EK. So $\sigma = 1$. Then res_K is injective. Let H be the image. Then $K^H = K^{\operatorname{Gal}(EK/E)} = K \cap E$. So $H = \operatorname{Gal}(K/K^H) =$

 $\operatorname{Gal}(K/K \cap E)$. So res_K is onto.

Proposition 9.4. Let K/F be finite, Galois of degree n. Then Gal(K/F) embeds into S_n .

Proof. By the primitive element theorem, $K = G(\theta)$, so $\operatorname{Gal}(K/F)$ permutes the roots of the conjugates of θ , a set with n elements. This action is faithful and transitive.

10 Profinite Groups and Infinite Galois Theory

10.1 Galois groups of infinite field extensions

Example 10.1. Consider $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$. It maps to each $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$, so $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \to \lim_{p \to \infty} \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$. This is injective because an element of $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ is determined by what it does to \mathbb{F}_{p^n} for all n. It is surjective because we can keep lifting elements in $\operatorname{Gal}(\mathbb{F}_{p^n}.\mathbb{F}_p)$.

This example had nothing to do with \mathbb{F}_p . In fact, for any Galois extension K/F,

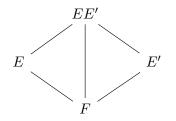
$$\operatorname{Gal}(K/F) \cong \varprojlim_{\substack{E \subseteq K \\ E/F \text{ finite, Galois}}} \operatorname{Gal}(E/F).$$

Then

$$\varprojlim_n \cong \varprojlim_n \mathbb{Z}/n\mathbb{Z} = \hat{\mathbb{Z}}$$

the Prüfer ring. $\mathbb{Z} < \hat{\mathbb{Z}}$ says that $\langle \varphi_p \rangle < \operatorname{Gal}(\overline{\mathbb{F}}_p, \mathbb{F}_p)$. Then $\overline{\mathbb{F}}_p^{\langle \varphi_p \rangle} = \mathbb{F}_p$. So $\operatorname{Gal}(K, K^H)$ can be bigger than H.

Suppose we have an inverse system $(G_i, \phi_{i,j})$ of groups, where I is a directed set. That is, given $i, j \in I$, there exists some k such that $k \leq i$ or $k \leq j$, and $\phi_{i,j} : G_i \to G_j$. Recall that the inverse limit $\lim_{i \in I} G_i \subseteq \prod_{i \in I} G_i$ is $\lim_{i \in I} G_i = \{(g_i)_{i \in I} : \phi_{i,j}(g_i) = g_j \forall i, j\}$. Then the Galois group will be $G = \lim_{i \in I} G_i$. If



then $\operatorname{Gal}(EE'/F)$ surjects onto both $\operatorname{Gal}(E/F)$ and $\operatorname{Gal}(E'/F)$.

10.2 Topological and profinite groups

Definition 10.1. A topological group G is a group with a topology such that the multiplication map $G \times G \to G$ and inversion map $G \to G$ sending $(x, y) \mapsto xy$ and $x \mapsto x^{-1}$ are continuous.

Then $\prod_{i \in I}$ has the product topology, which is generated by the base

$$\prod_{j\in J} U_j \times \prod_{i\in I\setminus J} X_i$$

where $U_j \subseteq X_j$ is open.

Then $G = \varprojlim_i G_i$ has the subspace topology induced from the product topology. G is a topological group with respect to this topology (exercise).

Definition 10.2. A profinite group is an inverse limit of finite groups $G = \varprojlim G_i$ endowed with the above topology, the profinite topology relative to $(G_i, \phi_{i,j})$

Example 10.2. Let $\hat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n\mathbb{Z}$. Then $\pi_n : \hat{\mathbb{Z}} \to \mathbb{Z}/n\mathbb{Z}$ is continuous, and $n\hat{\mathbb{Z}} = \ker(\pi_n) = \pi_n^{-1}(\{0\})$ is open. Then $n\hat{\mathbb{Z}}$ is a base of open neighborhoods of 0. Then $\{a+n\hat{\mathbb{Z}}\}$ is a basis of open neighborhoods of $a \in \mathbb{Z}$. Since \mathbb{Z} surjects onto $\mathbb{Z}/n\hat{\mathbb{Z}}$, we can find $a_n \in \mathbb{Z}$ such that $a_n \mapsto a + n\hat{\mathbb{Z}}$ for all n. So \mathbb{Z} is dense in $\hat{\mathbb{Z}}$; that is, its closure is $\hat{\mathbb{Z}}$.

Theorem 10.1. A topological group G is profinite if and only if it is compact, Hausdorff, and totally disconnected (every connected component is a point).

Let's assume the following fact from topology.

Proposition 10.1. A compact, Hausdorff space is totally disconnected if and only if it has a base of clopen neighborhoods.

We will prove one direction of the theorem.

Proof. Assume G is profinite. Products of compact, Hausdorff spaces are compact, Hausdorff. Closed subsets of Hausdorff spaces are compact, and subsets of Hausdorff spaces are Hausdorff. To show that G is closed, note that

$$G = \bigcap_{\phi_{i,j}} \{ (g_i)_{i \in I} : \phi_{i,j}(g_i) = g_j \}.$$

Now let U_j be open for all $j \in J$ with J finite. Then

$$\left(\prod_{j\in J} U_j \times \prod_{i\in I\setminus J} G_i\right)^c = \left(\bigcap_{j\in J} \left(U_j \times \prod_{i\neq j} G_i\right)\right)^c$$
$$= \bigcup_{j\in J} \left(U_j \times \prod_{i\neq j} G_i\right)^c$$
$$= \bigcup_{j\in J} U_j^c \times \prod_{i\neq j} G_i.$$

So $\prod_i G_i$ is totally disconnected. So $G = \lim G_i$ is totally disconnected.

Let $\pi_I : G \to G_i$. Then $\ker(\pi_i) = (\prod_{j \neq i} G_j) \times \{1\}$. Then $\prod_{i \in I \setminus J} G_i \times \prod_{j \in J} \{1\}$ is a basis of neighborhoods of 1. Then $\bigcap \varprojlim_i G_i = \bigcap_{j \in J} \ker(\pi_j)$ is an open subgroup of $\varprojlim G_i$ with finite index.

Proposition 10.2. In profinite groups, subgroups are open if and only if they are closed and have finite index.

Proof. (\Leftarrow): If $H \leq G$ is closed of finite index, then $\{gH : gH \neq H\} \subseteq G/H$ is a finite set. Each gH is closed, so $\bigcup_{gH \neq H} gH = H^c$. So H is open.

Definition 10.3. The Krull topology on Gal(K/F) is the profinite topology for

$$\operatorname{Gal}(K/F) = \lim_{\substack{E \subseteq K \\ E/F \text{ finite}}} \operatorname{Gal}(E/F).$$

Definition 10.4. If G is a group, the **profinite completion** is

$$\hat{G} = \varprojlim_{\substack{N \leq G \\ \text{finite index}}} N$$

This gives a functor from the category of groups to the category of topological groups.

10.3 The fundamental theorem of Galois theory for infinite degree extensions

Theorem 10.2 (fundamental theorem of Galois theory). Let K/F be Galois. There are inverse, inclusion reversing correspondences $\{E: K/E/F\} \rightarrow \{H: H \leq \operatorname{Gal}(K/F), H \text{ closed}\}$ sending $E \mapsto \operatorname{Gal}(K/E)$ and $H \mapsto K^H$. Respective correspondences exist for finite or normal extensions to open or normal subgroups. If E/F is normal, then $\operatorname{Gal}(K/F)/\operatorname{Gal}(K/E) \cong \operatorname{Gal}(E/F)$, where this is a topological isomorphism.

Example 10.3. The absolute Galois group of \mathbb{Q} is $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Example 10.4. The absolute Galois group of \mathbb{R} is $G_{\mathbb{R}} \cong \mathbb{Z}/2\mathbb{Z}$.

Example 10.5. The absolute Galois group of \mathbb{F}_p is $\hat{\mathbb{Z}} \cong \prod_{p \text{ prime}} \mathbb{Z}_p$, where $\mathbb{Z}_p = \varprojlim_n \mathbb{Z}/p^n \mathbb{Z}$.

Theorem 10.3 (Kronecker-Weber). Let μ_n be a primitive n-th root of unity, and let $\mathbb{Q}^{ab} = \bigcup_n \mathbb{Q}(\mu_n)$. Then $G_{\mathbb{Q}^{ab}} = \operatorname{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) \cong \hat{\mathbb{Z}}^{\times}$

11 Tensor Products

11.1 Construction, universal property, and examples

Let A be a ring, let M be a right A-module, and let N be a left A-module.

Definition 11.1. The **tensor product** of M and N over A, denoted $M \otimes_A N$, is the quotient of $\mathbb{Z}^{M \times N} = \bigoplus_{(m,n) \in M \times N} \mathbb{Z}(m,n)$ by the \mathbb{Z} -submodule generated by

1. (m+m',n) - (m,n) - (m',n)

2.
$$(m, n' + n) - (m, n) - (m, n')$$

3. (ma, n) - (m, an)

for all $m, m' \in M$, $n, n' \in N$, and $a \in A$. The image of (m, n) in $M \otimes_A N$ is denoted $m \otimes n$ and is called a **simple tensor**.

Example 11.1. How do simple tensors work? Let $k \in \mathbb{Z}$.

$$k(m \otimes n) = (m \otimes n) + \dots + (m \otimes n) = (m + \dots + m) \otimes = (km) \otimes n = m \otimes (kn).$$

Similarly,

$$(-1)(m \otimes n) = (-m) \otimes n.$$

 $0 \otimes n = 0 = m \otimes 0.$

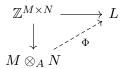
Proposition 11.1 (tensor product universal property). Let L be an abelian group and $\phi: M \times N \to L$ be such that

- 1. $\phi(m+m',n) = \phi(m,n) + \phi(m',n)$ (left biadditivity)
- 2. $\phi(m, n + n') = \phi(m, n) + \phi(m, n')$ (right biadditivity)
- 3. $\phi(ma, n) = \phi(m, an)$ (A-balanced).

There exists a unique homomorphism $\Phi: M \otimes_A N \to L$ such that $\Phi(m \otimes n) = \phi(m, n)$ for all $m \in M$ and $n \in N$.

$$\begin{array}{c} M \times N \xrightarrow{\phi} L \\ \downarrow & & \\ M \otimes_A N \end{array}$$

Proof. $M \otimes_A N = \mathbb{Z}^{M \times N} / I$ for the ideal generated by the relations. $\mathbb{Z}^{M \times N}$ is free over \mathbb{Z} , so there exists a unique $\varphi : \mathbb{Z}^{M \otimes N} \to L$ given by $\varphi((m, n)) = \phi(m, n)$. We get



where the map $\mathbb{Z}^{M \otimes N} \to M \otimes_A N$ is surjective. This uniquely determined Φ if it exists; i.e. $\Phi(I) = 0$. We can verify, for example, that

$$\varphi((m+m',n) - (m,n) - (m,n)) = \phi(m+m;n) - \phi(m,n) - \phi(m',n) = 0.$$

Here is a special case. Let A be an R-algebra, where R is commutative. Let $\psi : R \to Z(A)$, the center of A. M is an R-A bimodule, where rm = mr. Recall that an A-B bimodule is a left A-module and a right B module such that (am)b = a(mb) fir all $a \in A$, $m \in M$ and $b \in B$. We can define

$$r(m \otimes n) = (rm) \otimes n = (mr) \otimes n = m \otimes (rn)$$

to give $M \otimes_A N$ an *R*-module structure. Another way to do this would be to deinfe $M \otimes_A N$ as $R^{M \times N}$, quotiented by the *R*-submodule generated by the same relations, plus the relation r(m, n) - (rm, n).

What is the universal property saying?

$$\operatorname{Hom}_{R-\operatorname{mod}}(M \otimes_R N, L) \cong \operatorname{Hom}(M \times N, L),$$

where the right side is homomorphisms that are *R*-bilinear and *A*-balanced.

Example 11.2. Let K be a field. Then $K^m \otimes_K K^n$ is an *mn*-dimensional K vector space, generated by $e_i \otimes e_j$, where $\{e_i\}$ and $\{e_j\}$ form a basis for K^m and K^n , respectively:

$$K^m \otimes K^n = \left(\bigoplus_{i=1}^m K\right) \otimes K^n \cong \bigotimes_{i=1}^m (K \otimes K^n) \cong \bigoplus_{i=1}^m K^n \cong K^{mn}.$$

Example 11.3. $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/(m, n)\mathbb{Z}$. We have the biadditive, \mathbb{Z} -balanced map $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/(m, n)\mathbb{Z}$ sending $(a, b) \mapsto ab$, so there exists a unique map $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/(m, n)\mathbb{Z}$ sending $a \otimes b \mapsto ab$. This is surjective. Let $a, b \in \mathbb{Z}$. Then $m(a \otimes b) = ma \otimes b = 0$, and $n(a \otimes b) = a \otimes nb = 0$. Also, $a \otimes b = ab(1 \otimes 1)$, which means that this group is cyclic by has order dividing m and dividing n. So the map is injective.

Example 11.4. $A \otimes_A N \cong N$ as let *A*-modules.

More generally, let A, B, C be rings, let A be an A-B bimodule, and let N be a B-C bimodule. Then $M \otimes_B N$ is an A-C bimodule.

$$a(m \otimes n) = (am) \otimes n, \qquad m \otimes (nc).$$

11.2 Properties of the tensor product

Proposition 11.2. $M \otimes_A \cong N \otimes_{A^{op}} M$.

Proof. We have the map $(m, n) \mapsto m \otimes n$ which is bilinear and A-balanced. It induces a unique map $M \otimes_A N \to N \otimes_{A^{\text{op}}} M$.

Proposition 11.3. Let L be a right A-module, let M be an A-B bimodule, and let N be a left B-module. Then $(L \otimes_A M) \otimes BN \cong L \otimes_A (M \otimes_B N)$.

Proof. We can verify this using the universal property, as before. Alternatively, we can define the object $L \otimes_A M \otimes_B N$ as we defined the tensor product and show that $(L \otimes_A M) \otimes BN$ and $L \otimes_A (M \otimes_B N)$ are isomorphic to it.

Proposition 11.4. $(\bigoplus_{i \in I} M_i) \otimes_A N \cong \bigoplus_{i \in I} (M_i \otimes AN).$

Proposition 11.5. Let M be a left A-module, and let $I \subseteq A$ be a 2-sided ideal. Then $A/IA \otimes_A M \cong M/IM$ as A-modules.

Proof. Define a map $\phi : A/IA \times M \to M/IM$ such that $\phi(\overline{a}, m) = am + IM$. This is well-defined because if $b \in I$, then $\phi(b, m) = bm + IM = 0$. This satisfies the properties we need, so there exists a homomorphism $\Phi : A/I \otimes_A M \to M/IM$ of A-modules. This homomorphism is surjective. We can define an inverse $M/IM \to A/IA \otimes_A M$ sending $m + IM \mapsto 1 \otimes m$; this is well-defined because for $b_i \in I$ and $m_i \in M$,

$$\sum b_i m_i \mapsto 1 \otimes \sum b_i m_i = \sum (1 \otimes b_i m_i) = \sum \underbrace{(b_i \otimes m_i)}_{=0} = 0.$$

Check that this is the inverse of Φ .

We can also take tensor products of *R*-algebras *A* and *B* to get and *R*-algebra $A \otimes_R B$, where $(a \otimes b) \cdot (a' \otimes b') = aa' \otimes bb'$.

12 Tensor Products of Algebras and Homomorphism Groups

12.1 Tensor products of algebras

Let A, B, C be *R*-algebras, where *R* is a commutative ring. Let *M* and *N* be *R*-balanced *A*-*B* and *B*-*C* bimodules, respectively.

Definition 12.1. An *R*-balanced bimodule *M* is a module such that rm = rm for all $r \in R, m \in M$.

This is equivalent to M being a $A \otimes_R B^{\text{op}}$ -module. Then $M \otimes_B N$ becomes an R-balanced A-C bimodule:

$$a(m \otimes n) = am \otimes n,$$
 $(m \otimes n)c = m \otimes nc.$

We can also take tensor products of *R*-algebras, to get an *R*-algebra $A \otimes_R B$. We can define this by

$$(a \otimes b) \cdot (a' \otimes b') = aa' \otimes bb'.$$

Proposition 12.1. Multiplication is well-defined.

Proof. We want to construct $A \times B \to \operatorname{End}_R(A \otimes_R B)$ sending $(a, b) \mapsto \varphi_{a,b} = (a' \otimes b' \mapsto aa' \otimes bb')$. To show that $\varphi_{a,b}$ is well defined, we want a map $A \times B \to A \otimes_R B$ sending $(a', b') \mapsto aa' \otimes bb'$. By the universal property of the tensor product, we get a unique map $A \otimes_R B \to A \otimes_R B$, which we can set to be $\varphi_{a,b}$.

Now we want to show that our original map is bilinear. Check that

$$(ra_1 + a_2, b) \mapsto \varphi_{ra_1 + a_2, b} = r\varphi_{a_1, b} + r\varphi_{a_2}$$

By the universal property, we get a map $A \otimes_R B \to \operatorname{End}_R(A \otimes_R B)$ sending $a \otimes b \mapsto (a' \otimes b' \mapsto aa' \otimes bb')$. So then we get a map $A \otimes_R \times A \otimes_R B \to A \otimes_R B$ sending $(a \otimes b, a; \otimes b') \mapsto aa' \otimes bb'$. So the operation is well-defined.

Example 12.1. Let R be a commutative ring. Then $R[x] \otimes_R R[y] \cong R[x, y]$ by specifying $(x^i, y^j) \mapsto x^i y^j$ and extending this map to be bilinear. This map is surjective because we get every monomial in R[x, y]. Since R[x, y] is free on the monomials $x^i y^j$, we can define an inverse map defined by $x^i y^j \mapsto x^i \otimes y^j$.

Example 12.2. Let G be a group. The R-group ring of G, R[G], is the set of sums $\sum_{g \in G} a_g[g]$, where $a_g \in R$ and $a_g = 0$ for all but finitely many g. We can define multiplication on this by extending the multiplication on monomials defined by $[g] \cdot [h] = [gh]$.

12.2 Homomorphism groups

Example 12.3. Let M, N be R-modules. Then $\operatorname{Hom}_R(M, N)$ is an R-module: Let $\phi, \psi \in \operatorname{Hom}_R(M, N)$. Then we can define $(r\varphi)(m) := \varphi(rm) = r\varphi(m)$ and $(\varphi + \psi)(m) = \varphi(m) + \varphi(m)$. These are still R-module homomorphisms:

$$(r\varphi)(m)(sm) = \varphi(rsm) = \varphi(srm) = s\varphi(rm) = s(r\varphi)(m)$$

for $r, s \in R$.

Remark 12.1. If M, N are A-modules, then $\text{Hom}_A(M, N)$ is an R-module but not an A-module.

Example 12.4. Let M be an R-balanced A-B bimodule, and let N be an R-balanced A-C bimodule. Then Hom_A(M, N) is a B-C bimodule by defining

$$(b\varphi)(m) := \varphi(mb), \qquad (\varphi c)(m) = \varphi(m)c.$$

Check that everything is balanced.

$$\operatorname{Hom}_A(\cdot, \cdot) : A \otimes_R B^{\operatorname{op}}\operatorname{-mod} \to B \times A \otimes_R B^{\operatorname{op}}\operatorname{-mod} \to B \otimes_R C^{\operatorname{op}}\operatorname{-mod}$$
 is a bifunctor.

$$\operatorname{Hom}_{A}(M\prod_{i\in I}N_{i})\cong\prod_{i\in I}\operatorname{Hom}_{A}(M,N_{i}).$$
$$\operatorname{Hom}_{A}(\bigoplus_{i\in I}M_{i},N)\cong\prod_{i\in I}\operatorname{Hom}_{A}(M_{i},N).$$

Definition 12.2. If F is a field, and V is an F vector space, we can define the **dual** vector space, $V^* = \text{Hom}_F(V, F)$.

12.3 Dual vector spaces

If we have a map $f: V \to W$, we get a map $f^*: W^* \to V^*$ defined by $f^*(\varphi)(v) = \varphi \circ f(v)$, so $V \mapsto V^*$ is a contravariant functor from *F*-vector spaces to *F*-vector spaces.

If V has basis v_1, \ldots, v_n , then there is a **dual basis** $\varphi_1, \ldots, \varphi_n$ of V^* given by

$$\varphi_i(v_j) = \delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j. \end{cases}$$

So $V \cong V^*$ if V is finite dimensional. This is not the case if V is infinite-dimensional.

The functor $V \mapsto V^{**}$ covariant. We get $\Phi: V \to V^{**}$ given by $\Phi(v)(f) = f(v)$. Check that Φ is *F*-linear.

Proposition 12.2. $\Phi: V \to V^{**}$ is injective.

Proof. If $\Phi(v) = 0$, then f(v) = 0 for all $f \in V^*$; if $v \neq 0$, extend v to a basis B. Then there exists $f_v \in V^*$ such that $f_v(v) = 1$ and $f_v(w) = 0$ for all $w \in B$ with $w \neq v$. This is a contradiction.

However, Φ is not always an isomorphism. If $V = \bigoplus_{i \in I}$, then $V = \text{Hom}(\bigoplus_{i \in I} F, F) = \prod_{i \in I} \text{Hom}(F, F) = \prod_{i \in I} F$, which is bigger than V. So V^{**} will be even bigger.

Proposition 12.3. If W is finite dimensional over F, then $\operatorname{Hom}_F(V, W) \cong V^* \otimes_F W$ via $f \otimes w \mapsto (v \mapsto f(v)w)$.

Proof. $W = \bigotimes_{i=1}^{n} Fw_i$. Then

$$V^* \otimes_F \bigoplus_{i=1}^n F \cong \bigoplus_{i=1}^n V^* \otimes_F F \cong \bigoplus_{i=1}^n V^* \cong \bigoplus_{i=1}^n \operatorname{Hom}(V, F) \cong \operatorname{Hom}(V, \bigoplus_{i=1}^n F).$$

This isomorphism is precisely the map you get from composing these isomorphisms. \Box

12.4 Adjointness of Hom and \otimes

Theorem 12.1. Let A, B, C be R-algebras, and let M, N, L be R-balanced A-B, B-C, and A-C bimodules, respectively. Then $\operatorname{Hom}_A(M \otimes_B N, L) \cong \operatorname{Hom}_B(N, \operatorname{Hom}_A(M, L))$ as right C-modules. Moreover, these are natural in M, N, L. In fact, we have $t_M : B \otimes_R C^{\operatorname{op}}$ -mod $\to A \otimes_R C^{\operatorname{op}}$ -mod

$$N \longrightarrow M \otimes_R N$$

$$\downarrow^{\lambda} \qquad \qquad \downarrow^{\mathrm{id}_M \otimes_R \lambda}$$

$$N' \longrightarrow M \otimes_R N'$$

and $h_M : A \otimes_R C^{op} \operatorname{-mod} \to B \otimes_R C^{op} \operatorname{-mod} such that \operatorname{Hom}_A(tM(N), L) \cong \operatorname{Hom}_B(N, h_M(L))$ is natural in N and L; i.e. t_M is left adjoint to h_M .

We will prove this next time.

13 Hom- \otimes Adjunction, Tensor Powers, and Graded Algebras

13.1 Adjunction of Hom and \otimes

Theorem 13.1. Let A, B, C be R-algebras, and let M, N, L be R-balanced A-B, B-C, and A-C bimodules, respectively. Then $\operatorname{Hom}_A(M \otimes_B N, L) \cong \operatorname{Hom}_B(N, \operatorname{Hom}_A(M, L))$ as right C-modules. Moreover, these are natural in M, N, L. In fact, we have $t_M : B \otimes_R C^{\operatorname{op}}$ -mod $\to A \otimes_R C^{\operatorname{op}}$ -mod

$$N \longrightarrow M \otimes_R N$$

$$\downarrow^{\lambda} \qquad \qquad \downarrow^{\mathrm{id}_M \otimes_R \lambda}$$

$$N' \longrightarrow M \otimes_R N'$$

and $h_M : A \otimes_R C^{op} \operatorname{-mod} \to B \otimes_R C^{op} \operatorname{-mod} such that \operatorname{Hom}_A(tM(N), L) \cong \operatorname{Hom}_B(N, h_M(L))$ is natural in N and L; i.e. t_M is left adjoint to h_M .

Remark 13.1. This is the most general version, but you can safely forget C to get a more readable version of this theorem.

Proof. Let

$$\varphi \mapsto (n \mapsto \underbrace{(m \mapsto \varphi(m \otimes n))}_{\psi_n}).$$

This is a homomorphism of abelian groups. Define $\psi_n: M \to L$ be $\psi_n(m) = m \otimes n$. Then

 $\psi_n(am) = \psi_n((am) \otimes n) = a\psi(m \otimes n) = a\psi_n(m),$

so $\psi_n \in \operatorname{Hom}_A(M, L)$. Now look at $n \mapsto \psi_n$. Then

$$(b\psi_n)(m) = \psi_n(mb) = mb \otimes n = m \otimes bn = \psi_{bn}(m)$$

so $(n \mapsto \psi_n) \in \operatorname{Hom}_B(N, \operatorname{Hom}_A(M, L))$. Showing that our map is a map of C^{op} -mods is left as an exercise.

Let's find an inverse. Take $\theta \in \text{Hom}_B(N, \text{Hom}(M, L))$, and send

$$\theta \mapsto (m \otimes n \mapsto \theta(n)(m)).$$

Then

$$a(m \otimes n = am \otimes n \mapsto \theta(n)(am) = a\theta(n)(m)$$

so this is a map of A-modules. Also, $(m, n) \mapsto \theta(n)(m)$ gives a map $M \times N \to L$ that is left A-linear, B-balanced, and right C-linear (check this). So $M \otimes_B N \to L$ is a map of $A \otimes_R C^{\text{op}}$ -mods. To show that these are inverse maps, let $\varphi \mapsto \theta$, where $\theta(n)(m) = \varphi(m \otimes n)$. Then

$$\theta \mapsto \underbrace{(m \otimes n \mapsto \theta(n)(m) = \varphi(m \otimes n))}_{\alpha}$$

Check that the other composition works out.

13.2 Tensor powers and graded algebras

Let M be an R-module, where R is a commutative ring.

Definition 13.1. The k-th **tensor power** of M over R is $M^{\otimes k} = M \otimes_R M \otimes_R \cdots \otimes_R M$.

This satisfies the universal property for multilinear maps:

$$\begin{array}{c} M \times M \times \dots \times M \xrightarrow{} L \\ \downarrow & & \\ M \otimes_R M \otimes_R \dots \otimes_R M \end{array}$$

Definition 13.2. A graded ring $A = \bigoplus_{i=0}^{\infty} A_i$ is ring consisting of a sequence of abelian groups A_i such that

- 1. The restriction of $+: A \times A \to A$ to $A_i \times A_i$ is the operation on A_i
- 2. The restriction of $\cdot : A \times A \to A$ to $A_i \times A_j$ lands in A_{i+j} (so A_0 is a ring).

Here, $\operatorname{gr}^k(A) := A_k$ is called the *k*-th **graded piece**.

To check that the direct sum of abelian groups together with these maps forms a graded ring, we need these to be the same:

$$(A_i \times A_j) \times A_k \to A_{i+j} \times A_k \to A_{i+k+k},$$
$$A_i \times (A_j \times A_k) \to A_i \times A_{j+k} \to A_{i+j+k}.$$

Definition 13.3. A graded *R*-algebra is a graded ring with the A_i *R*-algebras, with a map $R \to Z(A_0)$ such that $R \times A_i \to A_i$ and $A_i \times R \to A_i$ are the same, and such that $A_i \times A_j \to A_{i+j}$ is *R*-bilinear.

Define

$$T(M) = \bigoplus_{k=0}^{\infty} M^{\otimes k},$$

where we have the map $M^{\otimes k} \times M^{\otimes \ell} \to M^{\otimes (k+\ell)}$ given by

$$(m_1 \otimes \cdots \otimes m_k) \cdot (m'_1 \otimes \cdots \otimes m'_\ell) = m_1 \otimes \cdots \otimes m_k \otimes m'_1 \otimes \cdots \otimes m'_\ell.$$

Then this is a graded R-algebra.

Example 13.1. Let R be a commutative ring. Then

$$T(R) = \bigoplus_{k=0}^{\infty} R \cong R[x],$$

where the k-th graded piece has basis element $1 \mapsto x^k$.

Example 13.2. Let R be a commutative ring. What is $T(R^{\oplus n}) = T(Rx_1 \oplus \cdots \oplus Rx_n)$? The k-th graded piece is generated by $x_{i_1} \otimes \cdots \otimes x_{i_k}$. However, this is not $R[x_1, \ldots, x_n]$. Notice that $x_i \otimes x_j \neq x_j \otimes x_i$, so $R^{\oplus n} \otimes_R R^{\oplus n} = R^{\oplus n^2}$. So

$$T(R^{\oplus n}) = R \langle x_1, \dots, x_n \rangle,$$

the noncommutative polynomial ring in n variables over R.

What is the universal property of T? If $\varphi : M \to A$ is a map of A modules, where A is an R-algebra, then there exists a unique $T(\varphi) : T(M) \to A$ such that

$$\begin{array}{c} M \xrightarrow{\varphi} L \\ \downarrow & & \\ T(M) \end{array}$$

because $T(\varphi)(m_1 \otimes \cdots \otimes m_k) = \varphi(m_1) \otimes \cdots \otimes \varphi(m_j)$ determines $T(\varphi)$. Let $I = \{m \otimes n - n \otimes m : m, n \in M\}$. Then

$$I = \bigoplus_{k=0}^{\infty} \operatorname{gr}^k(I),$$

where $\operatorname{gr}^k(I) := I \cap \operatorname{gr}^k(T(M))$. Then I is a **graded ideal**. If A is a graded *R*-algebra and I is a graded ideal of A, then

$$A/I \cong \bigoplus_{k=0}^{\infty} \operatorname{gr}^k(A) / \operatorname{gr}^k(I)$$

is a graded ring.

Definition 13.4. The symmetric algebra is S(M) = T(M)/I.

In the quotient,

$$m_1 \otimes m_2 \otimes m_3 = m_3 \otimes m_1 \otimes m_2 = m_1 \otimes m_3 \otimes m_2 = \cdots$$

Example 13.3. $S(R^{\oplus n}) = R[x_1, ..., x_n].$

14 Symmetric Powers, Exterior Powers, and Determinants

14.1 Symmetric algebras and powers

Let A be a graded R-algebra.

Definition 14.1. A homogeneous ideal I of A is an ideal such that $I = \bigoplus_{k=0}^{\infty} \operatorname{gr}^{k}(I)$, where $\operatorname{gr}^{k}(I) = I \cap \operatorname{gr}^{k}(A)$.

Lemma 14.1. An ideal is homogeneous if and only if it has a set of generators, each of which lies in some $\operatorname{gr}^k(A)$.

Example 14.1. Let $I = (x^3 - y^2) \subseteq A = R[x, y]$, which is graded by degree. This is not homogeneous, so A/I is not graded.

Let M be an R-module.

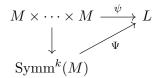
Definition 14.2. The tensor module is $T(m) = \bigoplus_{k=0}^{\infty} M^{\otimes k}$.

Definition 14.3. The symmetric algebra is S(M) = T(M)/I, where *I* is the ideal generated by $m \otimes n - n \otimes m$ for all $m, n \in M$. We call the graded pieces Symm^k(M) = $\operatorname{gr}^k(S(M))$.

Example 14.2. $S(R^{\oplus n}) = R[x_1, \ldots, x_n]$, and $\operatorname{Symm}^k(R^{\oplus n})$ is the set of homogenerous polynomials of degree k in x_1, \ldots, x_n .

 $\operatorname{Symm}^k(M)$ satisfies a universal property.

Proposition 14.1. For any $\psi : M^k \to L$ which is *R*-multilinear and symmetric in its variables, there is a unique Ψ such that



If $f: M \to N$ is a morphism of *R*-modules, then $\operatorname{Symm}^k(f): \operatorname{Symm}^k(M) \to \operatorname{Symm}^k(N)$ sends $m_1 \otimes \cdots \otimes m_k \mapsto \psi(m_1) \otimes \cdots \otimes \psi(m_k)$.

14.2 Exterior algebras and powers

To get antisymmetric instead of symmetric we could try the ideal generated by the $m \otimes n + n \otimes m$. If n = m, we get that $2m \otimes m$ is in the ideal, but $m \otimes m$ is not necessarily in the ideal. But we want $\psi(m, m, m, ...) = 0$. Instead take,

$$J = (\{m \otimes m : m \in M\}).$$

Then

$$J
i (m+n) \otimes (m+n) - m \otimes m - n \otimes n = m \otimes n + n \otimes m_{2}$$

so we get all the relations we want.

Definition 14.4. The exterior algebra on an *R*-module *M* is $\bigwedge(M) = T(M)/J = \bigoplus_{k=0}^{\infty} \bigwedge^k(M)$. $\bigwedge^k(M)$ is called the *k*-th extension product of *M*.

The k-th exterior product of M is universal for R-bilinear, alternating mpas in k-variables: $\psi(\ldots, m, m, \ldots) = 0$ for all m. We write the elements as

$$m \wedge \dots \wedge m_k \in \bigwedge^k(M).$$

Here are some properties:

1.
$$m_1 \wedge m_2 \wedge m_3 = -m_1 \wedge m_3 \wedge m_2 = m_3 \wedge m_1 \wedge m_2 = \cdots$$

2. $\cdots \wedge m \wedge m \wedge \cdots = 0$

A generalization of the first property is the following,

Lemma 14.2. $m_{\sigma(1)} \wedge \cdots \wedge m_{\sigma(k)} = (\operatorname{sign}(\sigma))m_1 \wedge \cdots \wedge m_k$.

 $\bigwedge^k (R^{\oplus n})$ is spanned by $e_{i_1} \wedge \cdots \wedge e_{i_k}$, where $2_1, \ldots, e_n$ is the standard basis of $R^{\oplus n}$, and $i_1, \ldots, i_k \in \{1, \ldots, n\}$. In fact, this is spanned by $e_{i_1} \wedge \cdots \wedge e_{i_k}$, where i_1, \ldots, i_k are distinct, or equivalently, $i_1 < \cdots < i_k$.

Theorem 14.1. $\bigwedge^k (R^{\oplus n})$ is free on the generators $e_{i_1} \wedge \cdots \wedge e_{i_k}$ with $1 \leq i_1 < \cdots < i_k \leq n$. In particular,

$$\dim\left(\bigwedge^{k}(R^{\oplus n})\right) = \begin{cases} \binom{n}{k} & k \le n\\ 0 & k > n. \end{cases}$$

Proof. Let $M = R^{\oplus n}$. Fix $i_1 < \cdots i_k$. It suffices to show the there exists some $\Phi : \bigwedge^k M \to R$ such that

$$\Psi(e_{i_1} \wedge \dots \wedge e_{i_k}) = 1, \qquad \Psi(e_{j_1} \wedge \dots \wedge e_{j_k}) = 0$$

if $j_1 < \cdots < j_k$ and $(i_1, \ldots, i_k) \neq (j_1, \ldots, j_k)$. We want a map $\psi : M \times \cdots \times M \to R$. Send

$$\psi(e_{j_1},\ldots,e_{j_k}) = \begin{cases} \operatorname{sign}(\sigma) & i_{\sigma(t)} = j_t \ \forall t \\ 0 & \{i_1,\ldots,i_k\} \neq \{j_1,\ldots,j_k\} \\ 0 & j_1,\ldots,j_k \text{ not distinct} \end{cases}$$

If it is alternating on a basis, it is alternating (exercise), so this is well-defined. Then we get a dual basis of the correct size. \Box

14.3 Determinants

Say M is free with basis e_1, \ldots, e_n , and $T: M \to M$ is R-linear. This induces $\bigwedge^n(T) :$ $\bigwedge^n(M) \to \bigwedge^n(M)$; this is a map $R \to R$, and it sends $e_1 \land \cdots \land e_n \mapsto 1$. This is multiplication by some element of R, which we call det(T). It satisfies $Te_1 \land \cdots \land Te_n = \det(T)e_1 \land \cdots \land e_n$.

Definition 14.5. det(T) is called the **determinant** of T.

Lemma 14.3. $Tv_1 \wedge \cdots \wedge Tv_n = \det(T)v_1 \wedge \cdots \wedge v_n$.

Proof. Expand each v_i as a linear combination of the $e_1 \wedge \cdots \wedge e_n$. Then the statement applies to each $Te_1 \wedge \cdots \wedge Te_n$, and we can do the steps in reverse.

Proposition 14.2. Let $T, U : M \to M$. Then $det(T \circ U) = det(T) det(U)$.

Proof.

$$det(TU)e_1 \wedge \dots \wedge e_n = TUe_1 \wedge \dots \wedge TUe_n$$

= det(T)Ue_1 \wedge \dots \wedge Ue_n
= det(T) det(U)e_1 \wedge \dots \wedge e_n. \square

Corollary 14.1. If $T: M \to M$ is an isomorphism, $det(T) \in R^{\times}$.

Proof. $det(T) det(T)^{-1} = 1$ by the proposition.

15 Properties of Determinants and Change of Basis

15.1 Formulas for determinants and effect of elementary matrices

We have an isomorphism $M_n(R) \cong \operatorname{End}_R(R^{\oplus n})$ sending a matrix A to the associated linear transformation T. We say $\det(A) := \det(T)$.

Theorem 15.1. det(A) = $\sum_{\sigma \in S_n} (sign(\sigma)) a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}$.

Proof. Let $v_j \in R^{\oplus n}$ be the *j*-th column vector of A. Then $T(e_j) = v_j$ for all *j*. Then

$$v_1 \wedge \cdots \wedge v_n = (\det A)e_1 \wedge \cdots \wedge e_n.$$

On the other hand,

$$v_1 \wedge \dots \wedge v_n = \sum_{i_1=1}^n \dots \sum_{i_n=1}^n a_{i_1,1} a_{i_2,2} \dots a_{i_n,n} e_{i_1} \wedge e_{i_2} \wedge \dots \wedge e_n$$

In this sum the term will be zero unless all of the i_j are distinct. These also correspond to $\sigma \in S_n$ such that $\sigma(j) = i_j$.

$$= \sum_{\sigma \in S_n} a_{\sigma(1),1} \cdots a_{\sigma(n),n} e_{\sigma(1)} \wedge \cdots \wedge e_{\sigma(n)}$$
$$= \sum_{\sigma \in S_n} a_{\sigma(1),1} \cdots a_{\sigma(n),n} \underbrace{\operatorname{sign}(\sigma)}_{=\operatorname{sign}(\sigma^{-1})} e_1 \wedge \cdots \wedge e_n$$
$$= \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1,\sigma(1)} \cdots a_{n,\sigma(n)} e_1 \wedge \cdots \wedge e_n.$$

 $\bigwedge^n (R^{\oplus n}) \cong R$ with basis $e_1 \wedge \cdots \wedge e_n$, so we get the desired equality.

Proposition 15.1. The determinant has the following properties:

- 1. $\det(T) = \det(A^{\top}).$
- 2. If we switch 2 rows or columns of A to get B, then det(B) = -det(A).
- 3. If we add an R-multiple of a row or column of A to another to get A, then det(C) = det(A).
- 4. If we scale a row or column of A by $\alpha \in R$, to get D, then $det(A) = \alpha det(A)$.

Proof. These follow from the formula for the determinant.

1. We showed this in the proof of the formula.

- 2. Reindex the sum by composing with a transposition.
- 3. If we have a repeated v_j , then the term is zero. So

$$v_1 \wedge \dots \wedge (v_i + cv_j) \wedge \dots \wedge v_n = v_1 \wedge \dots \wedge v_n + c(v_1 \wedge \dots \wedge v_j \wedge \dots \wedge v_n).$$

4. The proof is the same as the previous part.

15.2 Cofactor expansion

Definition 15.1. The (i, j) minor of a matrix A is the matrix $A_{i,j}$ with the *i*-th row and *j*-th column removed.

The (i, j) minor lies in $M_{n-1}(R)$.

Proposition 15.2. For all $k \leq j \leq n$,

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$$

Proof. First, write

$$v_1 \wedge \cdots \wedge v_n = (-1)^{j-1} v_j \wedge (v_1 \wedge \cdots \wedge v_{j-1} \wedge v_{j+1} \wedge \cdots \wedge v_n).$$

Write $v_j = \sum_{i=1}^n a_{i,j} e_i$, and write $w_k^{(i)} := v_k - a_{i,k} e_i$ for all i, k.

$$= (-1)^{j-1} \sum_{i=1}^{n} a_{i,j} e_i \wedge (w_1^{(i)} \wedge \dots \wedge w_{j-1}^{(i)} \wedge w_{j+1}^{(i)} \wedge \dots \wedge w_n^{(i)})$$

= $(-1)^{j-1} \sum_{i=1}^{n} a_{i,j} \det(A_{i,j}) e_i \wedge e_1 \wedge \dots \wedge e_{i-1} \wedge e_{i+1} \wedge \dots \wedge e_n$
= $\sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j}) e_1 \wedge \dots \wedge e_n.$

Remark 15.1. In this formula, we could have indexed over j, instead.

15.3 Adjoint matrices

Definition 15.2. The adjoint matrix to A is the matrix with (i, j)-entry $(-1)^{i+j} \det(A_{j,i})$. **Proposition 15.3.** $A \cdot \operatorname{ad}(A) = \det(A) \cdot I_n$. *Proof.* The (i, j) entry is

$$\sum_{k=1}^{n} a_{i,k} (-1)^{k+j} \det(A_{j,K} = \begin{cases} \det(A) & i = j \\ 0 & i \neq j \end{cases}$$

because if $i \neq j$, this is the determinant of A with the *j*-th row replaced by the *i*-th row. So it is 0.

Corollary 15.1. $A \in \operatorname{GL}_n(R) \iff \det(A) \in R^{\times}$. In this case, $A^{-1} = \det(A)^{-1} \operatorname{ad}(A)$.

Corollary 15.2. If V is free of rank n, then $T: V \to V$ is invertible iff $det(T) \in \mathbb{R}^{\times}$.

15.4 Change of basis

Let V, W be free *R*-modules of rank n, m respectively. Let $B = (v_1, \ldots, v_n)$ and $C = (w_1, \ldots, w_m)$ be ordered bases of V and W. Let $T : V \to W$ be an *R*-module homomorphism. Then $A = (a_{i,j})$ represents T with respect to B and C if

$$T(v_j) = \sum_{i=1}^m a_{i,j} w_i$$

for all $1 \leq j \leq n$.

B corresponds to $\varphi_B : \mathbb{R}^n \to V$, where $\varphi_B(e_i) = v_i$. Given $T : V \to W$, we get $\varphi_C^{-1} \circ T \circ \varphi_B : \mathbb{R}^n \to \mathbb{R}^m$ is $A \in M_{m,n}(\mathbb{R})$ using the standard basis.

Lemma 15.1. Let $T': U \to V$ and $T: V \to W$ be *R*-module homomorphisms where the modules have bases *B*, *C*, *C*, and *D*, respectively. Let *A'* represent *T'* with respect to *B* and *C*, and lt *A* represent *T* with respect to *C* and *D*. Then *AA'* represents *TT'* with respect to *B* and *D*.

Proof. We can see

$$\varphi_D^{-1} \circ T \circ T' \circ \varphi_B = (\varphi_D^{-1} \circ T \circ \varphi_C) \circ (\varphi_C^{-1} \circ T' \circ \varphi_B).$$

The first part is represented by A, and the latter part is represented by A'.

Definition 15.3. Let B, B' be bases of VV. The **change of basis matrix** $Q_{B,B'}$ from B to B' is the matrix representing $T_{B,B'}: V \to V$ with $T_{B,B'}(v_i) = v'_i$ with respect to B and B' is the matrix representing $\varphi_B^{-1}T_{B,B'}\varphi_B = \varphi_B^{-1} \circ \varphi_{B'}$.

16 Change of Basis, Characteristic Polynomials, Trace, and Localization of Modules

16.1 Change of basis

Last time, we discussed $Q_{B,B'}$, the change of basis matrix from $B \to B'$.

Remark 16.1. From the definition, we can see $Q_{B,B'}^{-1} = Q_{B',B}$.

Theorem 16.1 (change of basis). Let $T: V \to W$ be a homomorphism of free *R*-modules of finite rank. Let *B* and *B'* be ordered basis of *V*, and let *C* and *C'* be ordered bases of *W*. If *A* represents *T* with respect to *B* and *C*, then $Q_{C',C'}AW_{B,B'}$ represents *T* with respect to *B'* and *C'*.

Proof. Note that

$$\varphi_{C'}^{-1}T\varphi_{B'} = (\varphi_{C'}^{-1}\varphi_C)(\varphi_C^{-1}T\varphi_{B'})(\varphi_B\varphi_B^{-1}).$$

The left hand side represents T with respect to B' and C'. The right hand side terms are represented by $Q_{C,C'}^{-1}$, A, and $Q_{B,B'}$, respectively.

Definition 16.1. A and A' in $M_n(R)$ are similar if there exists some $Q \in GL_n(R)$ such that $A' = Q^{-1}AQ$.

Definition 16.2. A is diagonalizable if it is similar to a diagonal matrix.

16.2 Characteristic polynomials and trace

Now suppose that R = F is a field.

Definition 16.3. The characteristic polynomial $c_T \in F[x]$ of an *F*-linear transformation $T: V \to V$ of vector spaces is $\det(x \operatorname{id} - T)$.

Here, $x \operatorname{id} -T : F[x] \otimes_F V \to F[x] \otimes_F V$, where $x \operatorname{id} -T$ is really $x \otimes \operatorname{id} - \operatorname{id} \otimes T$. This is a map of free modules of finite rank. Similarly, we have $c_A(x) \in F[x]$ for $A \in M_n(F)$, where $c_A(x) = \det(xI - A)$, and $xI - A \in M_n(F[x])$.

Remark 16.2. $c_T(x) = c_A(x)$ for A representing T with respect to some basis B. This is independent of the basis B. Let $H = Q^{-1}AQ$. Then

$$c_H(x) = \det(xI - Q^{-1}AQ) = \det(Q^{-1}(xI - a)Q)$$

= $\det(Q)^{-1} \det(xI - A) \det(Q) = \det(xI - A)$
= $c_A(x)$.

Remark 16.3. If $T(v) = \lambda v$ for $v \in V, \lambda \in F$, then $c_T(\lambda) = \det(\lambda \operatorname{id} - T) = 0$. So $\lambda \operatorname{id} - T$ is not invertible.

Definition 16.4. The trace of a matrix $A = [a_{i,j}] \in M_n(R)$ is $tr(A) = \sum_{i=1}^n a_{i,i}$.

tr : $M_n(R) \to R$ is an additive homomorphism of *R*-modules.

Lemma 16.1. $c_A(a) = x^n - tr(A)x^{n-1} + \dots + (-1)^n det(A).$

Proof. To get the constant term, we have

$$c_A(0) = \det(-A) = (-1)^n \det(A).$$

To get the largest nonzero term, note that

$$\det(xI - A) = \sum_{\sigma \in S_n} (\operatorname{sign}(\sigma))(x\delta_{1,\sigma(1)} - a_{1,\sigma(1)}) \cdots (x\delta_{n,\sigma(n)} - a_{n,\sigma(n)}).$$

The coefficient of x^{n-1} comes form the term with $\sigma = id$:

$$(x - a_{1,1}) \cdots (x - a_{n,n}) = x^n - (a_{1,1} + \dots + a_{n,n})x^{n-1} + \dots$$

Definition 16.5. If $Tv = \lambda v$ with $v \neq 0$, then $\lambda \in F$ is called an **eigenvalue** of T, and v is called an **eugenvector** for T. Then $E_{\lambda}(T) = \{v \in V : Tv = \lambda v\}$ is an F-subspace of V called the λ -eigenspace for T.

If $T: V \to V$ is an *F*-linear transformation, then *V* has an *F*[*x*]-module structure by $f(x) \cdot v := f(T)(v)$. We want to study the module structure. We might as well study the structure of finitely generated modules over PIDs.

16.3 Localization of modules

Let R be a commutative ring, let M be an R-module, and let S be a multiplicatively closed subset of R.

Lemma 16.2. The relation \sim_S on $S \times M$ defined by $(s,m) \sim_S (t,n)$ is there exists some $r \in S$ such that r(sn - tm) = 0 is an equivalence relation.

Definition 16.6. The localization of M by S, called $S^{-1}M$ is the set of equivalence classes under \sim_S . We write m/s for the equivalence class of (s, m).

Lemma 16.3. $S^{-1}M$ is an $S^{-1}R$ -module under the operations

$$\frac{m}{s} + \frac{n}{t} = \frac{tm + sn}{st}, \qquad \quad \frac{r}{s} \cdot \frac{m}{t} = \frac{rm}{st}$$

Example 16.1. Let $p \subseteq R$ be a prime ideal. Let $S_p = R \setminus p$. Then $R_p = S_p^{-1}R$. So $M_p = S_p^{-1}M$ is an R_p -module.

Example 16.2. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}^2$. Then $M_{(3)} \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}^2_{(3)}$, is a $\mathbb{Z}_{(3)}$ -module, where $\mathbb{Z}_{(3)} = \{a/b: 3 \nmid b\}$.

17 Localization of Modules, Torsion, Rank, and Local Rings

17.1 Localization of modules

Let R be a commutative ring and $S \subseteq R$ be multiplicatively closed. If M is an R-module, we can define the localization $S^{-1}M$, which is an $S^{-1}R$ -module.

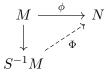
Example 17.1. Let S be the set of nonzero non-zero divisors in R. Then $S^{-1}R = Q(R)$ is called the **total quotient ring** of R. The module $S^{-1}M$ is a Q(R)-module. If R is an integral domain, Q is a field, so $S^{-1}M$ is a vector space.

If M is and R-module and N is an $S^{-1}R$ -module,

$$\operatorname{Hom}_{S^{-1}R}(S^{-1}M, N) \cong \operatorname{Hom}_R(M, N).$$

That is, localization is a left-adjoint to the forgetful functor.

Localization satisfies a universal property: For any $\phi: M \to N$, where N is an $S^{-1}R$ -module,



where $\Phi(m/s) = s^{-1}\phi(m)$.

Proposition 17.1. $S^{-1}M \cong S^{-1}R \otimes_R M$ as $S^{-1}R$ -modules.

Proof. Let $S^{-1}R \times M \to S^{-1}M$ send $(r/s, m) \mapsto (rm)/s$. This is left $S^{-1}R$ -linear and right *R*-linear, so we get a map $S^{-1}R \otimes RM \to S^{-1}M$ of $S^{-1}R$ -modules. Conversely, we have the *R*-module homomorphism $M \to S^{-1}R \otimes_R M$ sending $m \mapsto 1 \otimes m$. The universal property gives a map $S^{-1}M \to S^{-1}R \otimes_R M$ sending $m/s \mapsto s^{-1} \otimes m$. Check that these are inverse maps.

17.2 Torsion and rank

Let Q = Q(R) be the total quotient ring of R.

Definition 17.1. If M is an R-module, then $m \in M$ is torsion if there exists some $r \in S$ such that rm = 0.

 $M_{\text{tor}} = \{m \in M : m \text{ torsion}\}\$ is an *R*-submodule of *M*.

Lemma 17.1. $M_{\text{tor}} = \ker(M \to Q \otimes_R M)$.

Proof. $m \in M_{\text{tor}}$ iff m/1 = 0 in $Q \otimes_R M$, since this is isomorphic to $S^{-1}M$.

Example 17.2. Let $A = \mathbb{Z}^2 \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$. Then $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} = A_{\text{tor}}$ is the torsion part.

Definition 17.2. We say M is torsion-free if $M_{tor} = 0$.

Definition 17.3. The **annihilator** of M (in R) is Ann $(M) := \{r \in R : rm = 0 \forall m \in M\}$.

This is an ideal of R.

Lemma 17.2. If R is an integral domain and M is finitely generated over R, then $\operatorname{Ann}(M) \neq 0$ if and only if $M = M_{\text{tor}}$.

Proof. (\implies): If Ann $(M) \neq 0$, then there exists some $r \neq 0$ in M such that rm = 0 for all $m \in M$. So $m \in M_{\text{tor}}$ for all $m \in M$.

 (\Leftarrow) : Let $m_1, \ldots, m_n \in M$ generated M as an R-module. Let $e_1, \ldots, r_n \in R \setminus \{0\}$ be such that $r_i m_i = 0$ for all i. Then $r_1 \cdots r_n m = 0$ for all $m \in M$. Since R is an integral domain, $r_1 \cdots r_n \neq 0$, so $r_1 \cdots r_n \in Ann(M)$.

Definition 17.4. The rank of an *R*-module over an integral domain *R* is rank_{*R*}(*M*) = $\dim_Q(Q \otimes_R M)$, if this dimension is finite.

Proposition 17.2. rank_R(M) is the maximal number of R-linearly independent elements in M.

Proof. An element of M_{tor} is by itself linearly dependent. We may replace M by M/M_{tor} , so we may suppose M is R-torsion free. Then $M \to Q \otimes_R M$ is an injection. M has $\leq \dim_Q(Q \otimes_R M) = \operatorname{rank}_R(M) =: n$ linearly independent elements. If $v_1, \ldots, v_n \in Q \otimes_R M$ is a basis over Q, then there exists some $r \in R$ such that $rv_1, \ldots, rv_n \in M$, and the rv_i are R-linearly independent. So we have at least n R-linearly independent elements in M. \Box

17.3 Local rings

Definition 17.5. A commutative ring R is local if it has a unique maximal ideal m.

If R is local, R/m is a field, called the **residue field** of R.

Proposition 17.3. Let R be commutative, and let $p \subseteq R$ be a prime ideal. Then R_p is a local ring with maximal ideal pR_p . The ideals of R_p are R_p and IR_p with $I \subseteq p$.

Lemma 17.3. If R is local and m is maximal, then $R \setminus m = R^{\times}$.

Proof. If $a \in R \setminus m$, then (a) = R. So $a \in R^{\times}$. Conversely, if $a \notin R^{\times}$, then $(a) \neq R$, so $(a) \subseteq m$. So $a \in m$.

Lemma 17.4. If R is commutative an $m \subseteq R$ is maximal, then $R/m \cong R_m/mR_m$.

Proof. Look at $R/m \to R_m/mR_m$ given by $r + m \mapsto r/1 + mR_m$. These are both fields, so this is an injection. If $r \in R$ and $u \in R \setminus m$, then there eixsts some $r \in R \setminus m$ such that $uv = 1 \mod m$. Then $vr + m \mapsto (vr)/1 + mR_m = r/n + mR_m$. So this is onto. \Box

Proposition 17.4. Let R be commutative and M be an R-module. The following are equivalent.

- 1. M = 0
- 2. $M_p = 0$ for all prime ideals $p \subseteq R$
- 3. $M_m = 0$ for all maximal ideals $m \subseteq R$.

Proof. Each of these is a special case of the last, so we just need to show (3) \implies (1). Let $m \in M \setminus \{0\}$. Let $U = \operatorname{Ann}(R_m) = \{r \in M : rm = 0\}$. I is proper, so $I \subseteq m$ for some maximal ideal m.² If $r/u \in R_m$ is such that $(r/u)m = 0 \in M_m$, then there exists $s \in R \setminus m$ such that srm = 0. Then $sr \in m$, so $r \in m$ as m is prime. So $\operatorname{Ann}(R_mm) \subsetneq R_m$. Then $m/1 \neq 0$ in R_m .

Next time, we will prove the following important theorem.

Lemma 17.5 (Nakayama). If M is a finitely generated module over a local ring (R, m) such that mM = M, then M = 0.

Remark 17.1. What does the condition mM = M mean? M/mM is an R/m-vector space. This says that if M/mM = 0, then M = 0.

²This uses Zorn's lemma.

18 Nakayama's Lemma and Structure Theory of Finitely Generated Modules Over PIDs

18.1 Nakayama's lemma and consequences

Lemma 18.1 (Nakayama). If M is a finitely generated module over a local ring (R, m) such that M/mM = 0, then M = 0.

Proof. Let $m_1, \ldots, m_n \in M$ generate M. Then mM = M, so $m_1 \in mM$; that is there exist $a_i \in m$ such that $m_1 = \sum_{i=1}^n a_i m_i$. So $(1 - a_1)m_1 = \sum_{i=1}^n a_i m_i$. and $1 - a_1 \in R^{\times} = R \setminus m$. So $m_1 \in \text{span}(\{m_2, \ldots, m_n\})$. By recursion, M can be generated by 0 elements, so M = 0.

Corollary 18.1. Let M be a finitely generated R-module, where (R, m) is local. Let $X \subseteq M$ be such that $\{x + mM : x \in X\}$ generates M/mM as an R/m-vector space. Then X generates M as an R-module.

Proof. Let $N = Rx \subseteq M$. Then N + mM = M. Now M/N = (N + mM)/N = m(M/N). So by Nakayama's lemma, M/N = 0, so M = N.

Here's how we use this.

Example 18.1. Do the tuples (111, 107, 50), (23, -17, 41), (30, -8, 104) span \mathbb{Q}^3 as a \mathbb{Q} -vector space? They will if they span $\mathbb{Z}^3_{(p)}$ for a prime p. By Nakayama's lemma, it suffices to check if they generate $\mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)} \cong \mathbb{Z}/p\mathbb{Z}$. For p = 3, the tuples are (0, -1, -1), (-1, 1, -1), and (0, 1, -1). These triples span \mathbb{F}^3_3 , so the otiginal set spans \mathbb{Q}^3 .

Lemma 18.2. Let (R,m) be local, and let M be a finitely generated free module over R. Let $X \subseteq M$. If the image of X in M/mM is R/m-linearly independent, then X is R-linearly independent and can be extended to a basis of M.

Proof. Let \overline{X} be the image of X in M/mM. Extend \overline{X} to a basis \overline{B} of M/mM. By the corollary, any lift B of \overline{B} spans M, and we can choose B to contain X. We claim that B is R-linearly independent. Say $B = \{m_1, \ldots, m_n\}$. Consider $\sum_{i=1}^n a_i m_i \in M$, where $a_i \in R$ and are not all 0. Let $k \geq 0$ be minimal such that $a_i \notin m^{k+1}$ for some i. Then we have a map $m^k/m^{k+1} \otimes_R M \cong m^k/m^{k+1} \otimes M/mM \to m^kM/m^{k+1}M$. These are both vector spaces over R/m. This map is an isomorphism if M = R. In general, $M \cong \bigoplus_{i=1}^n R$, and tensor products distribute over direct sums, so $m^kM/m^{k+1}M \cong \bigoplus_{i=1}^n m^k/m^{k+1}$. Then $\sum_{i=1}^n a_i \otimes m_i \mapsto \sum_{i=1}^n a_i m_i$, so if the latter is 0, so is the former. But $\sum_{i=1}^n a_i \otimes m_i \neq 0$ since the m_i are a basis of M/mM.

18.2 Structure theory of finitely generated modules over PIDs

Let R be a PID, and let Q = Q(R).

Lemma 18.3. Any finitely generated R-submodule of Q is cyclic (generated by a single element).

Proof. If $M \subseteq Q$ is a finitely generated R-submodule ,then $M = \sum_{i=1}^{n} R\alpha_i$, where $\alpha_i \in Q$. Then there exists a nonzero $d \in R$ such that $d\alpha_i \in R$ for all i. Then $dM \subseteq M$, so dM = (a), where $a \in R$. Since $d: M \to dM$ is an isomorphism, M = R(a/d).

Proposition 18.1. Let V be an n-dimensional Q-vector space, and let $M \subseteq V$ be a finitely generated R-submodule. Then there exists a basis $B = \{v_1, \ldots, v_n\}$ of V such that M is a fer R-module with basis $\{v_1, \ldots, v_k\}$ $(k \leq n)$.

Proof. WIthout loss of generality, $M \neq 0$. Take $m_1 \in M \setminus \{0\}$. Then $Qm_1 \subseteq V$ is a 1-dimensional Q-vector space. Then $M \cap Qm_1 = Rv_1$ for some $v_1 \in M$ by the lemma. Let $\overline{M} = M/Rv_1$, and let $\overline{V} = V.Qv_1$. Then $\overline{M} \to \overline{V}$ is an injection. By induction on n, there exist $v_2, \ldots, v_n \in V$ such that \overline{M} is free on $v_2 + Rv_1, \ldots, v_k + Rv_1$ with $k \leq n$, and $v_i + Rv_1$ form a basis of \overline{V} for $2 \leq i \leq n$. Then $M = \bigoplus_{i=1}^k Rv_i$, and $V = \bigoplus_{i=1}^n Qv_i$.

Corollary 18.2. Every finitely generated torsion-free module over a PID is free.

Proof. Let M be a finitely generated torsion-free R-module. Then we have an map $M \to M \otimes_R Q$, which is an injection, since the kernel is $M_{\text{tor}} = 0$. It follows by the proposition that M is free.

Corollary 18.3. Any submodule of a free R-module of rank n is free of rank $\leq n$.

Proposition 18.2. Let R be a ring, and let $\pi : M \to F$ be a surjection of R-modules with F free. Then there exists a spitting $\iota : F \to M$ such that ι is injection and $\pi \circ \iota = id_F$. Moreover, $M = \ker(\pi) \oplus \iota(F)$; i.e. F is a direct summand of M.

Proof. Let B be a basis of F. For each $b \in B$, let $m_b \in M$ be such that $\pi(m_n) = b$. Define $\iota: F \to M$ by $\iota(b) = m_b$ using the universal property of F. We get $\pi \circ \iota = \mathrm{id}_F$ (since linear maps that agree on a basis are equal). Then $\pi(m - \iota \circ \pi(m)) = \pi(m) - (\pi \circ \iota)(\pi(m)) = \pi(m) - \pi(m) = 0$. So $m - \iota \circ \pi(m) \in \ker(\pi)$. So $M = \ker(\pi) + \mathrm{im}(\iota)$. If $m \in \ker(\pi)$ and $m = \iota(n)$, then $0 = \pi(m) = (\pi \circ \iota)(n) = n$, so m = 0. So these have trivial intersection, giving us $M = \ker(\pi) \oplus \mathrm{im}(\iota)$.

19 Structure Theorem for Finitely Generated Modules over PIDs

19.1 Stripping off the torsion free part from a module

Last time, we proved the following:

Proposition 19.1. Let R be a ring, and let $\pi : M \to F$ be a surjection of R-modules with F free. Then there exists a spitting $\iota : F \to M$ such that ι is injection and $\pi \circ \iota = id_F$. Moreover, $M = \ker(\pi) \oplus \iota(F)$; i.e. F is a direct summand of M.

Proposition 19.2. If R is a PID and M is a finitely generated R-module, then $M \cong R^n \oplus M_{\text{tor}}$ for $r = \text{rank}_R(M)$.

Proof. Let Q = Q(R). Then $M \to M \otimes_R Q$ has kernel M_{tor} , so the image of $M/M_{\text{tor}} \to M \otimes_R Q$ is torsion-free and hence free. So we have a surjection $M \to R^r$, where $r = \operatorname{rank}_R(M)$. Then $M/M_{\text{tor}} \otimes_R Q \cong M \otimes_R Q$ with kernel M_{tor} . So $M = M_{\text{tor}} \oplus R^r$.

19.2 Decomposition of the torsion part of a module

Let M be a finitely generated R-torsion module. Then Ann(M) = (x) for some $c \in R$ because R is a PID. The Chinese remainder theorem gives

$$R/(c) = \prod_{i=1}^{r} R/(\pi_i^{k_i}),$$

where $c_{=}\pi_{1}^{k_{1}}\cdots\pi_{r}^{k_{r}}$ is a factorization of c into distinct irreducibles. We then get

$$M \cong M/cM \cong M \otimes_R R/(c) \cong \bigoplus_{i=1}^r M \otimes_R R/(\pi_i^{k_i}) \cong \bigoplus_{i=1}^r M/\pi_i^{k_i}M.$$

We have shown that

$$M \cong \bigoplus_{i=1}^{k_i} M_{(\pi_i)} \cong \bigoplus_{i=1}^k M/\pi_i^{k_i} M.$$

 $R_{(\pi_i)}$ is a local ring with maximal ideal (π_i) , so all of its ideals have the form (π_i^j) for $j \ge 0$ and (0). So

$$R/\pi_i^{k_i}R \cong R_{(\pi_i)}/\pi_i^{k_i}R(\pi_i)$$

has ideals (π_i^j) for $j \ge 0$ and (0).

Now let $\pi \in R$ be irreducible with $k \geq 1$, and write $\overline{R} = R/(\pi^k)$. Let M be a finitely generated \overline{R} -module. We split into cases. If $\overline{R} = R/(\pi)$ is a field: Then $M \cong \overline{R}^d$ for some $d \geq 0$. For the next case, we need the following.

Proposition 19.3. If M be a finitely generated R-module with $\pi^k M = 0$, then $M \cong \bigoplus_{i=0}^n R/(\pi^{j_i})$ with $j_1 \ge j_2 \ge \cdots \ge j_n \ge 1$.

We want to induct to get this, so we need the following lemma:

Lemma 19.1. If m is a finitely generated \overline{R} -module and F is a maximal free \overline{R} -submodule, then $M = F \oplus C$ with $\pi^{k-1}C = 0$.

Here is a case we have to watch out for:

Example 19.1. \mathbb{Z} is a free \mathbb{Z} -module, and $2\mathbb{Z}$ is a free \mathbb{Z} -submodule, but the latter is not a direct summand of the former.

Lemma 19.2. Any free \overline{R} -submodule of a finitely generated \overline{R} -module is a direct summand.

To prove this lemma, we first have the following fact.

Proposition 19.4. Any free \overline{R} -submodule of a free, finitely generated \overline{R} -module is a direct summand.

Proof. Let A be a free \overline{R} -submodule of a finitely generated free \overline{R} -module B. We have the map $\iota: A \to B/\pi B$. If $a \in A$ with $\iota(a) = 0$; then $a \in A \cap \pi B$, so $\pi^{k-1}a = 0$. Then $a \in \pi A$. So $A/\pi A \to B/\pi B$ is an inclusion.

Then $B/\pi B = A/\pi A \oplus \overline{N}$. Last time, we showed that we can lift a basis of $B/\pi B$ containing a basis of $A/\pi A$ to a basis of B containing a basis of A. Now $B = A \oplus N$ for some N.

Assuming lemma 1 is true, we can use the fact to prove the second lemma as follows.

Proof. If $A \subseteq M$ is a free \overline{R} -submodule, choose F to be a maximal free submodule containing A. Then $M = F \oplus C$, and $F = A \oplus D$ by assumption, so $M = A \oplus (C \oplus D)$. \Box

Now we can prove lemma 1.

Proof. Let $k \ge 2$. Let f be a maximal free \overline{R} -submodule. Let $N = M[\pi^{k-1}] = \{n \in M : \pi^{k-1}n = 0\}$. Then $\pi F \subseteq N$, and πF is a free R/π^{k-1} -submodule of N. By induction, there exists an R/π^{k-1} -submodule C such that $N = \pi F \oplus C$; here, we are using lemma 2 in the inductive step.

We claim that $M = F \oplus C$. Note that $F/\pi F \to M/N$ is an isomorphism. For injectivity, $F \cap N = \pi F$. Surjectivity follows from the maximality of F: we can lift a basis of M/Ncontaining a basis of $F/\pi F$ to a basis of a larger or equal free \overline{R} -module (inside M) by the result from last time. Then M = N + F = C + F. Then $F \cap C = \pi F \cap C = 0$, so $M = F \oplus C$.

19.3 The structure theorem

Theorem 19.1 (structure theorem for finitely generated modules over PIDs). Let R be a PID, and let M be a finitely generated R-module.

- 1. There exist unique $r, k \ge 0$ and nonzero proper ideals $I_1 \subseteq I_2 \subseteq \cdots I_k$. such that $M \cong R^r \oplus R/I_1 \oplus \cdots \oplus R/I_k$.
- 2. There exist unique $r, \ell \ge 0$ and distinct nonzero prime ideals p_i (up to ordering) and integers $\nu_{i,1} \ge \nu_{i,2} \ge \cdots \ge \nu_{i,m_i} \ge 1$ for some $m_i \ge 1$ such that

$$M \cong R^r \oplus \bigoplus_{i=1}^{\ell} \bigoplus_{j=1}^{m_i} R/p_i^{\nu_{i,j}}.$$

The ideals I_1, \ldots, I_k are called **invariant factors**, and the $p_i^{\nu_{i,j}}$ are called **elementary** divisors.

Remark 19.1. When $R = \mathbb{Z}$, this is exactly the statement of the structure theorem for finitely generated abelian groups.

Proof. We have already proved the second part. For the first part, let $b_j = \pi_1^{\nu_{1,j}} \pi_2^{\nu_{2,j}} \cdots \pi_{\ell}^{\nu_{\ell,j}}$ for $j = 1, \ldots, k$, where k is maximal such that $b_j \neq 1$. Here, we take $\nu_{i,j} = 0$ for $j > m_i$. Set $I_j = (b_j)$ and apply the Chinese remainder theorem:

$$R/(b_j) \cong \bigoplus_{i=1}^{\ell} R/(\pi_i^{\nu_{i,j}}).$$

Uniqueness is left as an exercise.³

³:(

20 Jordan Canonical Form

20.1 Existence and description of the Jordan canonical form

Let F be a field. Recall that an F-vector space V with a linear transformation $T: V \to V$ is the same as an F[x]-module V; The isomorphisms are

$$(V,T) \mapsto f(x) \cdot v = f(T)(v)$$

 $(V,x:V \to V) \leftarrow V$

This induces a correspondence between finite dimensional vector spaces with $T: V \to V$ and finitely generated torsion F[x]-modules V. A finitely generated torsion F[x]-module is

$$V \cong \bigoplus_{i=1}^{r} F[x]/(f_i)$$

where $f_i \in F[x]$ is monic with $\deg(f_i) = n_i$ and $f_1 \mid f_2 \mid \cdots \mid f_r$. Take the basis of V:

$$\{1, x, \dots, x^{n_1-1}, 1, x, \dots, x^{n_2-1}, \dots, 1, x, \dots, x^{n_r-1}\}$$

A matrix representing $x: V \to V$ with respect to this basis is

$$A = \begin{bmatrix} A_{f_1} & & & \\ & A_{f_2} & & \\ & & \ddots & \\ & & & A_{f_r} \end{bmatrix}.$$

 $V_f = F[x]/(f)$, where f is monic, irreducible and of degree n has basis $1, x, \ldots, x^{n-1}$. The matrix A_f representing $x : V_f \to V_f$ is determined by:

$$x \cdot x^{i-1} = x^i, \qquad 1 \le i \le n-1$$

 $x \cdot x^{n-1} = x^n = -\sum_{i=1}^{n-1} c_i x^i,$

where $f = \sum_{i=1}^{n} c_{i} x^{i}, c_{n} = 1$. So

$$A_f = \begin{bmatrix} 0 & & -c_0 \\ 1 & 0 & & -c_1 \\ & 1 & \ddots & & \vdots \\ & & 0 & \vdots \\ & & & 1 & -c_{n-1} \end{bmatrix},$$

the **companion matrix** to f. The characteristic polynomial is

$$c_T(x) = c_A(x) = c_{A_{f_1}}(x) \cdots c_{A_{f_r}}(x),$$

where

$$c_{A_{f}}(x) = \begin{vmatrix} x & & c_{0} \\ -1 & x & & c_{1} \\ & -1 & \ddots & \vdots \\ & & x & \vdots \\ & & -1 & x + c_{n-1} \end{vmatrix}$$
$$= x \begin{vmatrix} x & & c_{1} \\ -1 & x & & c_{2} \\ & -1 & \ddots & \vdots \\ & & & z & \vdots \\ & & & -1 & x + c_{n-1} \end{vmatrix} + (-1)^{n-1}c_{0} \begin{vmatrix} -1 & x & & \\ & -1 & x \\ & & & \ddots & x \\ & & & & -1 \end{vmatrix}$$
$$= x \left(\frac{f - c_{0}}{x} \right) + c_{0}$$
$$= f.$$

So $c_T(x) = f_1 \dots f_r$. Then Ann $(V) = (f_r) = (m_T(x))$, where $m_T(x)$ is the **minimal** polynomial.

Assume $c_T(x)$ splits completely (e.g. F is algebraically closed. By the structure theorem, we can write

$$V \cong \bigoplus_{j=1}^{t} F[x]/(x-\lambda_j)^{n_j},$$

where $\lambda_j \in F$. Then

$$V = \bigoplus_{i=1}^{m} V_{\lambda_i}, \quad \text{where } \bigoplus_{j=1}^{t_{\lambda}} F[x]/(x - \lambda_i)^{n_{\lambda,j}}$$

by grouping the terms with the same λ together. Let

$$V_{n,\lambda} = F[x]/(x - \lambda^n).$$

Take the basis $(x - \lambda)^{n-1}, (x - \lambda)^{n-2}, \dots, 1$. Then

$$x \cdot (x - \lambda^{n-i}) = \lambda (x - \lambda)^{n-i} + (x - \lambda)^{n-i+1}, \qquad 2 \le i \le n$$
$$x \cdot (x - \lambda)^{n-1} = \lambda (x - \lambda)^{n-1}$$

Then

$$J_{n,\lambda} \begin{bmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & \\ & & \lambda & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda \end{bmatrix} \in M_n(F)$$

is called a **Jordan block**, and the matrix

$$A = \begin{bmatrix} J_{n_1,\lambda_1} & & \\ & \ddots & \\ & & J_{n_t,\lambda_t} \end{bmatrix}$$

represents $x: V \to V$ with respect to the basis

$$(x - \lambda_1^{n_1 - 1}, \dots, 1, (x - \lambda_2)^{n_2 - 1}, \dots, 1, \dots, (x - \lambda_t)^{n_t - 1}, \dots, 1.$$

The characterisitc polynomial is

$$c_{A_{n,\lambda}}(x) = \begin{vmatrix} x - \lambda & -1 \\ x - \lambda \\ & \ddots & -1 \\ & & x - \lambda \end{vmatrix} = (x - \lambda)^n.$$

20.2 Eigenvalues and eigenspaces

Proposition 20.1. λ is an eigenvalue of T iff $\lambda = \lambda_i$ for some i (where λ_i are those appearing in the Jordan canonical form).

Proof. Look at $J_{\lambda,n}$. Then $J_{\lambda,n}e_1 = \lambda e - 1$, and $(J_{\lambda,n} - \lambda I)e_i = e_{i-1}$. λ is an eigenvalue of R iff λ is on the diagonal of A.

Definition 20.1. The **generalized eigenspace** of T for λ is

$$\{v \in V : (T - \lambda I)^m v = 0 \text{ for some } m \ge 0\}$$

Proposition 20.2. $c_t(x)$ splits completely iff V s a direct sum of its generalized eigenspaces.

Example 20.1. Let

$$A = \begin{bmatrix} 2 & 2 & 3 \\ 1 & 3 & 3 \\ -1 & -2 & -2 \end{bmatrix}.$$

The characteristic polynomial is $c_A(x) = (x-1)^3$. We have 3 possibilities for the Jordan canonical form:

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 \end{bmatrix}.$$

Note that

$$A - I = \begin{bmatrix} 1 & 2 & 3\\ 1 & 2 & 3\\ -1 & -2 & -3 \end{bmatrix}$$

has nullspace spanned by

$$\begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 3\\0\\-1 \end{bmatrix}.$$

So we must be in the 2nd case. Look at

$$(A - I)e_1 = e_1 + e_2 - e_3.$$

Then we have the basis

$$B = (e_1, e_1 + e_2 + e_3, 2e_1 - e_2),$$

and A in this basis is

$$J = \begin{bmatrix} 1 & 1 \\ & 1 \\ & & 1 \end{bmatrix} = Q^{-1}AQ,$$

where Q is the change of basis matrix from the standard basis to B. We can calculate

$$Q = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -1 & 0 \end{bmatrix}.$$

21 Elementary Symmetric Functions and Discriminants

21.1 Elementary symmetric functions

Definition 21.1. If F is a field and x_1, \ldots, x_n are indeterminates, for $1 \le k \le n$, the k-th elemetary symmetric polynomial in x_1, \ldots, x_n is $s_{n,k} \in F[x_1, \ldots, x_n]$ given by

$$s_{n_k} = \sum_{\substack{1 \le i_1 < i_2 < \dots < i_k \le n}} x_{i_1} \cdots x_{i_k} = \sum_{\substack{P \subseteq [n] \\ |P| = k}} \prod_{i \in P} x_i.$$

Example 21.1. Here are some examples of elementary symmetric polynomials.

$$s_{n,1} = x_1 + \dots + x_n$$
$$x_{n,n} = x_1 \dots x_n$$
$$x_{n,2} = x_1 x + 2 + x_1 x_3 + \dots + x_1 \dots x_n + x_2 x_3 + \dots + x_2 x_2 + \dots + x_{n-1} x_n$$

The module generated by these polynomials is isomorphic to $T^k(F^{\oplus n})^{S_k} \cong \text{Sym}^k(F^{\oplus n})$ if $k! \in F^{\times}$.

Proposition 21.1. $F(x_1, \ldots, x_n)/F(s_{n,1}, \ldots, s_{n,n})$ is finite, Galois with Galois group S_n .

Proof. Call this extension K/E. Then

$$f(y) = \prod_{i=1}^{n} (y - x_i) = \sum_{i=1}^{n} (-1)^{n-i} s_{n,i} y^i$$

has roots x_1, \ldots, x_n . So K is the splitting field of f over E. If $\rho \in S_n$, there exists a unique $\phi(\rho) \in \operatorname{Aut}_R(K)$ such that $\phi(\rho)(h(x_1, \ldots, x_n)) = h(x_{\rho(1)}, \ldots, x_{\rho(n)})$. Then $\phi(\rho)(s_{n,k}) = s_{n,k}$) so $|phi(\rho) \in \operatorname{Gal}(K/E)$. So $\phi : S_n \to \operatorname{Gal}(K/E)$ is injective. This is also onto as $[K:E] \leq \deg(f)! = n!$.

Corollary 21.1. Every finite group is the Galois group of some field extension.

Proof. If $H \leq S_n$, take $\operatorname{Gal}(K/K^H)$.

Whether this happens for extensions of \mathbb{Q} is still an open problem. This is false over \mathbb{Q}_p , the *p*-adic numbers, because all finite extensions of \mathbb{Q}_p are solvable.

21.2 Discriminants

Definition 21.2. The **discriminant** of a monic, degree *n* polynomial $f \in F[x]$ with $f = \prod_{i=1}^{n} (x - \alpha_i) \in \overline{F}[x]$ is

$$D(f) = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2.$$

Proposition 21.2. Let $f \in F[x]$. The following are equivalent:

- 1. f is inseparable.
- 2. D(f) = 0.
- 3. $f = \sum_{i=0}^{n} a_i x^i$ and $f' = \sum_{i=1}^{n} i a_i x^i$ share a common factor in F[x].

Proposition 21.3. $D(f) \in F$.

Proof. We may assume f is separable. Let K be the splitting field and $\sigma \in \text{Gal}(K/F)$. Then

$$\Delta = \prod_{1 \le i < j \le n} (x_i - x_j) \in F[x_1, \dots, x_n].$$

For $\sigma \in \Delta$, $\sigma(\Delta) = \operatorname{sgn}(\sigma)\Delta$. Then $\sigma(\Delta^2) = \Delta^2$. We have an injective map $\operatorname{Gal}(K/F) \to S_n$ sending $\tau \mapsto \rho(\tau)$. This tells us that $\tau(D(f)) = D(f)$.

We have actually shown the following.

Corollary 21.2. Let f be monic, separable, and irreudcible. $D(f) \in (F^{\times})^2$ if and only if $\operatorname{Gal}(K/F) \to A_n$ is an embedding via permutation of the roots.

Example 21.2. Let $f = x^2 + ax + b$. Let α, β be the roots in \overline{F} . We also have $F(\alpha) = F(\beta)$. Then $-a = \alpha + \beta$, and $b = \alpha\beta$.

$$D = D(f) = (\alpha - \beta)^2 = a^2 - 4b.$$

If char(F) = 2, then $a^2 - 4b = a^2$. So $F(\alpha)/F$ is trivial if $a \neq 0$ and inseparable if a = 0. If char(F) $\neq 2$, then F(a)/F is separable. Then $a^2 - rb \in F^2 \iff \alpha \in F$. The quadratic formula gives us that $F(\alpha) = F(\sqrt{D})$.

Example 21.3. Suppose char(F) $\neq 3$, and let $f = x^3 + ax^2 + bx + c \in F[x]$. If we let y = x + 1/3, then

$$f(x) = f(y - a/3) = y^3 + \underbrace{(-a^2/3 + b)}_p y + \underbrace{(3a^2/27 - ab/3 + c)}_q.$$

So we have gotten rid of the degree 2 term. Let $g = x^3 + px + q \in F[x]$. Let K be the splitting field of f over F, and let $\alpha, \beta, \gamma \in K$ be the roots of g. Then

$$s_{3,1}(\alpha,\beta,\gamma) = \alpha + \beta + \gamma = 0$$
$$s_{3,2}(\alpha\beta,\gamma) = p$$
$$s_{3,3}(\alpha\beta,\gamma) = -\alpha\beta\gamma = q$$

Then

$$0 = (\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2p$$
$$p = (\alpha\beta + \alpha\gamma + \beta\gamma)^2 = \alpha^2\beta^2 + \alpha^22\gamma^2 + \beta^2\gamma^2.$$

We can the compute

$$g' = 3x^2 + p = s_{3,2}(x - \alpha, x - \beta, x - \gamma)$$
$$g'(x) = 3\alpha^2 + \beta = (\alpha - \beta)(\alpha - \gamma)$$

So in the end, we get

$$-D(g) = (3x^2 + p)(3\beta^2 + p)(3\gamma^2 + \beta) = 27q^2 + 4p^3.$$

Then observe that

$$D(f) = D(g) = -27q^2 - 4p^3.$$

If f is irreducible, then $\operatorname{Gal}(K/F) \to S_3$ is an embedding and the Galois group has order divisible by 3. So this is isomorphic to $A_3 \cong \mathbb{Q}/3$, or it is isomorphic to S_3 itself. We get $\operatorname{Gal}(K/F) \cong \mathbb{Z}/3\mathbb{Z}$ if $D(f) \in (F^{\times})^2$, and $\operatorname{Gal}(K/F) \cong S_3$ otherwise.

22 Norm, Trace, Characters, and Hilbert's Theorem 90

22.1 Norm and trace

Definition 22.1. Let E/F be a finite extension. For $\alpha \in E$, let $m_{\alpha} : E \to E$ be $x \mapsto x_{\alpha}$. The **trace** $\operatorname{tr}_{E/F} : E \to F$ and **norm** $N_{E/F} : E \to F$ send $\alpha \mapsto \operatorname{tr}(m_{\alpha})$ and $\alpha \mapsto \det(m_{\alpha})$, where we view $m_{\alpha} \in \operatorname{End}_{F}(E)$ as a matrix.

Remark 22.1. $m_{\alpha+\lambda\beta} = m_{\alpha} + \lambda m_{\beta}$, so the trace is a linear map. The norm is multiplicative because $m_{\alpha\beta} = m_{\alpha} \circ m_{\beta}$.

Proposition 22.1. Let E/F be finite with $x \in E$. Then

$$N_{E/F}(x) = \prod_{\sigma \in \operatorname{Emb}_F(F(x))} \sigma(x)^N = \prod_{\sigma \in \operatorname{Emb}_F(E)} \sigma(x)^{[E:F]_i},$$

$$\operatorname{tr}_{E/F}(x) = N \sum_{\sigma \in \operatorname{Emb}_F(F(x))} \sigma(x) = \left(\sum_{\sigma \in \operatorname{Emb}_F(E)} \sigma(x)\right) [E:F]_i,$$

where $N = [F(x):F]_i [E:F(x)] = [F(x):F]_i [E:F(x)]_i [E:F(x)]_s$

Proof. In each case, the second equality follows from

$$N = [F(x) : F]_i[E : F(x)]$$

= [F(x) : F]_i[E : F(x)]_i[E : F(x)]_s
= [E : F]_i[E : F(x)]_s.

Case 1: E = F(x): Let n = [F(x) : F], let $f_x(t) = \sum_{i=0}^n a - it^i$ be the minimal polynomial of x over F. We can write $f_x(t) = \prod_{\sigma \in \text{Emb}_F(F(x))} (t - \sigma(x))^{[F(x):F]_i}$. Let β be the basis $\{1, x, \ldots, x^{n-1} \text{ of } F(x)$. We want to show that $f_x(t)$ is the characteristic polynomial of m_x . The matrix of m_x is

$$[m_x]_{\beta} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & & & -a_1 \\ & 1 & & \vdots \\ & \ddots & & & \\ & & \ddots & & -a_{n-2} \\ & & & 1 & -a_{n-1} \end{bmatrix}.$$

Then the characteristic polynomial of m_x is $\sum_{i=0}^n a_i t^i$. So

$$\operatorname{tr}(_{E/F}(x) = \operatorname{tr}(m_x) = -a_{n-1} = [F(x) : F]_i \sum \sigma_{\sigma \in \operatorname{Emb}_F(F(x))}(x)$$

$$N_{E/F}(x) = \det(m_x) = (-1)^n a_0 = \prod_{\sigma \in in \, \text{Emb}_F(F(x))} \sigma(x)^{[F(x),F]_i}$$

For the general case, let $\{y-1, \ldots, y_k\}$ be an F(x)-basis for E. Then $E = \bigoplus_{i=1}^k F(x)y_i$. is a decomposition into m_x -invariant subspaces (k = [E : F(x)]). So $\beta = \{x^i y_j\}$ is a basis for E/F, and

$$[m_x]_{\beta} = \begin{bmatrix} m_x & & & \\ & m_x & & \\ & & \ddots & \\ & & & & m_x \end{bmatrix}$$

is block diagonal with blocks of the type of the previous case. So

$$\operatorname{tr}(m_x) = [E:F(x)][F(x):F]_i \sum \sigma_{\sigma \in \operatorname{Emb}_F(F(x))}(x)$$
$$\operatorname{det}(m_x) = \prod_{\sigma \in \operatorname{Emb}_F(F(x))} \sigma(x)^{[E:F(x)][F(x):F]_i}.$$

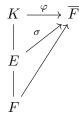
Corollary 22.1. Let E/K/F be finite. Then

$$\begin{split} N_{K/F} &= N_{E/F} \circ N_{K/E}, \\ \mathrm{tr}_{K/F} &= \mathrm{tr}_{E/F} \circ \mathrm{tr}_{K/E} \,. \end{split}$$

Proof. Let $x \in K$. Then

$$N_{E/F}(N_{K/E}) = \prod_{\sigma \in \operatorname{Emb}_F(E)} \sigma \left(\prod_{\tau \in \operatorname{Emb}_E(K)} \tau(x) \right)$$

Any $\varphi: K \to \overline{F}$ can be written as $\hat{\sigma} \circ \tau$ for some unique $|sigma \in \text{Emb}_F(E)$ and $\tau \in \text{Emb}_E(K)$.



Then $\tau = \varphi \circ \hat{\sigma}^{-1}$ fixes *E*. So

$$N_{E/F}(N_{K/E}) = \prod_{\sigma} \prod_{\tau} \hat{\sigma}\tau(x) = \prod_{\varphi \in \operatorname{Emb}_F(K)} \varphi(x).$$

22.2 Characters and Hilbert's theorem 90

Theorem 22.1 (Hilbert's theorem 90). Let E/F be finite, Galois with cyclic Galois group $G = \langle \sigma \rangle$. Then

$$\ker(N_{E/F}) = \{\sigma(x)/x : x \in E^{\times}\},\$$
$$\ker(\operatorname{tr}_{E/F}) = \{\sigma(x) - x : x \in E\}.$$

The \supseteq containments require no conditions, so we need to prove the other containments. To prove this, we need a bit of character theory.

Definition 22.2. Let G be a group, and let E be a field. A **character** on G with values in E is a group homomorphism $\chi: G \to E^{\times}$.

The set of all characters $\operatorname{char}_F(G) \subseteq \operatorname{Fun}(G.E)$ is subset of an *E*-vector space.

Lemma 22.1. $\operatorname{char}_E(G)$ is linearly independent.

Proof. Let $\{\chi_1, \ldots, \chi_m\}$ be a minimal linearly dependent set. Let $\sum_{i=1}^{\infty} a_i \chi_i = 0$ with all $a_i \neq 0$. Choose $h \in G$ such that $\chi_1(h) \neq \chi_m(h)$. Let $b_i = a_i(\chi_i(h) - \chi_m(h)) \in E$; then $b_1 \neq 0$ and $b_m = 0$ (by definition). Now for $g \in G$,

$$\sum_{i=1}^{m-1} b_i \chi_i(g) = \sum_{i=1}^{m-1} a - i\chi_i(h)\chi_i(g) - a_i\chi_m(j)\chi_i(g)$$

=
$$\sum_{i=1}^{m-1} a_i\chi_i(hg) - \chi_m(h)\sum_{i=1}^{m-1} a_i\chi_i(g)$$

=
$$-a_m\chi_m(hg) - \chi_m(h)(-a_m\chi_m(g))$$

=
$$-a_m\chi_m(hg) + a - m\chi_m(hg)$$

=
$$0.$$

This contradicts the minimality of $\{\chi_1, \ldots, \chi_m\}$.

We can now prove Hilbert's theorem 90.

Proof. We want to show that $\ker(N_{E/F}) = \{\sigma(x)/x : x \in E^{\times}\}$. Take $x \in \ker(N_{E/F})$. Then

$$\chi_x = \sum_{i=0}^{n-1} \left(\prod_{j=0}^{i-1} \sigma^j(x) \right) \sigma^i$$

is a character. Then

$$\chi_x(y) = y + x\sigma(y) + x\sigma(x)\sigma^2(y) + \dots + x\sigma(x)\sigma^2(x) \cdots \sigma^{n-2}(x)\sigma^{n-1}(y).$$

The idea is we want to find a fixed point of applying σ and multiplying by x. This is because if $y \neq 0$,

$$x = \frac{\sigma(y)}{y} \iff x = \frac{y}{\sigma(y)} \iff \sigma(y)x = y.$$

For all $y \in E$, we have that $x\sigma(\chi_x(y)) = \chi_x(y)$. If $\chi_x(y) \neq 0$, we are done because $x = \chi_x(y)/\sigma(\chi_x(y))$. So χ_x is a nonzero linear combination of distinct characters and is hence nonzero by the lemma. Thus, there exists $y \in E^{\times}$ such that $\chi_x(y) \neq 0$. \Box

We will do the trace next time.

23 Discriminants of Linear Maps

23.1 Hilbert's theorem 90

Let's complete our proof of Hilbert's theorem 90.

Theorem 23.1 (Hilbert's theorem 90). Let E/F be finite, Galois with cyclic Galois group $G = \langle \sigma \rangle$. Then

$$\ker(N_{E/F}) = \{\sigma(x)/x : x \in E^{\times}\},\$$
$$\ker(\operatorname{tr}_{E/F}) = \{\sigma(x) - x : x \in E\}.$$

Last time, we proved the result for the trace.

Proof. dim ker(tr) $\geq n - 1$, where n = [E : F]. Since ker(tr_{E/F}) $\supseteq \{\sigma(x) - x : x \in E\}$, it suffices to show that tr_{E/F} $\neq 0$. Write the trace as tr_{E/F} $= \sum_{\sigma \in G} \sigma$. This is a nonzero linear combination of characters, so tr_{E/F} $\neq 0$.

23.2 Discriminants of linear maps

Recall that if $f \in F[t]$ factors in \overline{F} as $f = \prod_{i=1}^{n} (t - \alpha_i)$, then the discriminant is disc $(f) = \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j)^2$. If $F(\alpha) = E/F$ is Galois and f is the minimal polynomial of α , then we can embed $G \to A_n$ iff disc(f) is a square in F.

Let V be an F-vector space with dim(V) = n. The space $\{\psi : V \otimes V \to F\}$ of bilinear forms on V has dimension n^2 . Let $\beta = \{v_1, \ldots, v_n\}$ be an ordered basis for V. Then

$$\operatorname{Hom}(V \otimes_F V, F) \cong M_n(F),$$

via the maps

$$\psi \mapsto M_{\psi} = [\psi(v_i \otimes v_j)]_{i,j},$$
$$\psi_M(v_i \otimes v_j \mapsto v_i^\top M v_j) \leftrightarrow M.$$

Definition 23.1. The discriminant of ψ (with respect to β) is $\text{Disc}_{\beta}(\psi) = \det(M_{\psi})$.

Proposition 23.1. Let $T: V \to V$ be linear with basis β of V. Let $T \otimes T: V \otimes V \to V \otimes V$. Then

$$\operatorname{Disc}_{\beta}(\psi \circ T \otimes T) = \operatorname{det}(T)^2 \operatorname{Disc}_{\beta}(\psi).$$

Proof. $\psi(Tv_i, Tv_j) = ([T]_{\beta}, e_i)^{\top} M_{\psi}[T]_{\beta} e_j$, so

$$M_{\psi \circ T \otimes T} = [T]_{\beta}^{+} M_{\psi}[T]_{\beta}.$$

Let E/F be a field extension, and let $\beta = \{v_1, \ldots, v_n\}$ be a bassi for E/F. Let

$$E \otimes E \xrightarrow{m} E \xrightarrow{\operatorname{tr}_{E/F}} F$$

send $v \otimes W \mapsto tr(vw)$. Call this composition map tr.

Proposition 23.2. Let $\operatorname{Emb}_F(E) = \{\sigma_1, \ldots, \sigma_n\}$. Define $Q = [\sigma_i(v_j)]_{i,j}$. Then $M_{\operatorname{tr},\beta} = Q^\top Q$. In particular,

$$\operatorname{Disc}_{\beta}(\operatorname{tr}) = \operatorname{det}(Q)^2.$$

Proof.

$$\operatorname{tr}(v_i, v_j) = \sum_{k=1}^n \sigma_k(v_i v_j)$$
$$= \sum_{k=1}^n \sigma_k(v_i) \sigma_k(v_j)$$
$$= (Q^\top Q)_{i,j}.$$

Let $f(t) = \prod_{i=1}^{n} (t - \alpha_i) \in F[t]$ be irreducible and separable. Consider $F(\alpha_1)/F$. We have the nice basis $\beta = \{1, \alpha_1, \dots, \alpha_1^{n-1}\}$. Then $\operatorname{Emb}_F(F(\alpha)) = \{\sigma_i : \alpha_1 \mapsto \alpha_i\}$. Then

	Γ1	α_1	•••	α_1^{n-1}]
	1	α_2	• • •	α_2^{n-1}
$Q(\alpha_1,\ldots,\alpha_n) =$:	:	:	:
$Q(\alpha_1,\ldots,\alpha_n) =$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\dot{\alpha}_n$	•	α_n^{n-1}

is the Vandermonde matrix.

Proposition 23.3. det $(Q(\alpha_1, \ldots, \alpha_n)) = \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i)$. *Proof.*

$$\begin{vmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \cdots & \alpha_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha_n & \cdots & \alpha_n^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 1 & \alpha_2 - \alpha_1 & \cdots & \alpha_2^{n-2}(\alpha_2 - \alpha_1) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha_n - \alpha_1 & \cdots & \alpha_n^{n-2}(\alpha_n - \alpha_1) \end{vmatrix}$$
$$= 1 \begin{vmatrix} \alpha_2 - \alpha_1 & \cdots & \alpha_2^{n-2}(\alpha_2 - \alpha_1) \\ \vdots & \vdots & \vdots \\ \alpha_n - \alpha_1 & \cdots & \alpha_n^{n-2}(\alpha_n - \alpha_1) \end{vmatrix}$$

$$= (\alpha_2 - \alpha_1) \begin{vmatrix} 1 & \alpha_2 & \cdots & \alpha_1^{n-2} \\ 1 & \alpha_3 & \cdots & \alpha_2^{n-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha_n & \cdots & \alpha_n^{n-2} \end{vmatrix}$$

•

This is the Vandermonde determinant for n-1 variables. By induction, we are done. \Box

So if $F(\alpha)/F$ is eparable and f is the minimum polynomial of α , then

$$\operatorname{Disc}(f) = \det(Q(\alpha_1, \dots, \alpha_n))^2 = \operatorname{Disc}_{\{1, \alpha, \dots, \alpha^{n-1}\}}(\operatorname{tr})$$

Proposition 23.4. Let $F(\alpha)/F$ be separable of degree n, and let f be the minimum polynomial of α . Then

$$Disc(f) = (-1)^{n(n-1)/2} N_{E/F}(f'(\alpha)) /$$

Proof. Let $f(r) = \prod_{i=1}^{n} (t-\alpha_i)$. Then $f'(t) - \sum_{i=1}^{n} \prod_{j \neq i} (t-\alpha_j)$, and $f'(\alpha_i) = \prod_{j \neq i} (\alpha_i - \alpha_j)$. Then

$$N_{E/F}(f'(\alpha_i)) = \prod_{j=1}^n \sigma_j (\prod_{j \neq i} (\alpha_i - \alpha_j))$$

=
$$\prod_{(i,j), i \neq j} (\alpha_i - \alpha_j)$$

=
$$(-1)^{n(n-1)/2} \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i)$$

=
$$(-1)^{n(n-1)/2} \operatorname{Disc}(f).$$

Corollary 23.1. Let E/F be separable. The discriminant of the trace form is nonzero.

Proof. Write $E = F(\alpha)$. Write $\beta = \{1, \alpha, \alpha^n\}$. Let f be the minimum polynomial of α . Then

$$\operatorname{Disc}_{\beta}(\operatorname{tr}) = \operatorname{Disc}(f) = \pm N_{E/F}(f'(\alpha)) \neq 0.$$

24 Kummer Theory and Solvability by Radicals

24.1 Kummer theory

Definition 24.1. A **Kummer extension** of a field F is an extension generated by roots of elements of F^{\times}

Let F be a field, and let $\mu_n = \mu_n(\overline{F})$ be the *n*-th roots of unity in an algebraic closure of \overline{F} of F.

Proposition 24.1. Let $n \ge 1$, and let $a \in F$. Set E = F(a), where $\alpha^n = a$. Let $d \ge 1$ be minimal such that $\alpha^d \in F$.

- 1. E/F is Galois iff char $(F) \nmid d$ and $\mu_d \subseteq E$.
- 2. If E/F is Galois, and $\mu_d \subseteq F$, then $\chi_a : \operatorname{Gal}(E/F) \to \mu_n$ such that $\chi_a(\sigma) = \sigma(\alpha)/\alpha$ is an isomorphism onto μ_d .

Definition 24.2. χ_a is the *n*-th **Kummer character** of *a*.

Proof. To prove (1), let f be the minimal polynomial of α . Then $f \mid (x^d - \alpha^d)$, but $f \nmid (x^m - \alpha^m)$ for all m property dividing d (by the minimality of d. If $|\mu_d| = d$, then all roots of $x^d - \alpha^d$ are distinct. So f is separable. If $|\mu_d| = m \neq d$, then $x^d - \alpha^d = (x^m - \alpha^m)^{d/m}$. But $f \mid x^d - \alpha^d$ and $f \nmid x^m - \alpha^m$, so f is not separable. So char $(F) \nmid d$ iff E/F is separable.

Now assume that $\operatorname{char}(F) \nmid d$. Let $\sigma : E \to \overline{F}$ be an embedding fixing F satisfying $\sigma \alpha = \zeta \alpha$ for some $\zeta \in \mu_d$. If $\mu_d \subseteq E$, then $\zeta_\alpha \in E$, so $\sigma(E) \subseteq E$. So E/F is normal and hence Galois. If $\mu_d \not\subseteq E$, then there exists σ such that ζ has order d, since $f \nmid x^m - \alpha^m$ for all m strictly dividing d. Then $\zeta \alpha \notin E$, so $\sigma \alpha \notin E$. So E/F is normal.

To prove (2), suppose that E/F is Galois and $\mu_d \subseteq F$. Then

$$\chi_a(\sigma\tau) = \frac{\sigma\tau(\alpha)}{\alpha} = \frac{\sigma\tau(\alpha)}{\sigma(\alpha)} \frac{\sigma(\alpha)}{\alpha} = \frac{\sigma\alpha}{\alpha} \sigma\left(\underbrace{\frac{\tau(\alpha)}{\alpha}}_{\in \mu_d \subseteq F}\right) = \chi_a(\sigma) \cdot \sigma(\chi_a(\tau)).$$

Then χ_a is 1 to 1 since it is onto and $[E:F] \leq d$, since $f \mid (x^d - \alpha^d)$.

Remark 24.1. In general, even if $\mu \not\subseteq F$, we have a map $\chi_a : \operatorname{Gal}(E/F) \to \mu_f$ send ing $\sigma \mapsto \sigma(\alpha)/\alpha$ that is a **1-cocycle**: $\chi_a(\sigma\tau) - \chi_a(\sigma) \cdot \sigma(\chi_a(\tau))$.

Proposition 24.2. Let char(F) $\nmid n$, and $\mu_n \subseteq F$. If E/F is a cyclic extension of degree N, then $E = F(\alpha)$ with $\alpha^n \in F^{\times}$.

Proof. Let $\mu_n = \langle \zeta \rangle$. Then $N_{E/F}(\zeta) = \zeta^n = 1$. Then Hilbert's theorem 90 gives us that there exists $\alpha \in E$ and $\sigma \in \text{Gal}(E/F)$ of order n such that $\sigma(\alpha)/\alpha = \zeta$.

$$N_{E/F}(\alpha) = \prod_{i=0}^{n-1} \sigma^i(\alpha) = \prod_{i=0}^{n-1} \zeta^i \alpha = \zeta^{n(n-1)/2} \alpha^n = (-1)^{n-1} \alpha^n.$$

Set $a = -N_{E/F}(-\alpha) \in F^{\times}$. Then

$$\alpha^n = (-1)^{n-1} N_{E/F}(\alpha) = -N_{E/F}(-\alpha) = a \in F^{\times}.$$

24.2 Perfect pairing

Definition 24.3. An *R*-bilinear pairing $(\cdot, \cdot) : A \times B \to C$ is **perfect** if the induced maps $A \to \operatorname{Hom}_R(B, C)$ and $B \to \operatorname{Hom}_R(A, C)$ are both isomorphisms. It is **nondegenerate** if these are both injective.

Example 24.1. Let V be an infinite-dimensional vector space over F. Then look at the pairing $V \times V^* \to F$. Then we get an embedding $V \to \text{Hom}(V^*, F) = V^**$, which is not in general an isomorphism. So this pairing is nondegenerate, but it is not perfect.

Theorem 24.1. Let $\operatorname{char}(F) \nmid n$ and $\mu_n \subseteq F$. Let E/F be (finite) abelian of exponent dividing n, and set $\Delta = F^{\times} \cap (E^{\times})^n$. Then there is a perfect pairing $\operatorname{Gal}(E/F) \times \Delta/(F^{\times})^n \to \mu_n$ sending $(\sigma, \alpha) \mapsto \sigma(a^{1/n})/a^{1/n} = \chi_a(\sigma)$, and $E = F(\sqrt[n]{\Delta}) = F(\sqrt[n]{a} : a \in \Delta)$. In particular we have bijections between (finite) abelian extension of F of exponent dividing n and subgroups of F^{\times} containing $(F^{\times})^n$ (with finite index):

$$E \mapsto F^{\times} \cap (E^{\times})^n,$$
$$F(\sqrt[n]{\Delta}) \longleftrightarrow \Delta.$$

Proof. We have a map $\Delta/(F^{\times})^n \to \text{Hom}(\text{Gal}(E/F), \mu_n)$ sending $a \mapsto \chi_a$. Then $\chi_a = 1$ iff $a \in (F^{\times})^n$. So this map is 1 to 1. Given $\chi : \text{Gal}(E/F) \to \mu_n$, the kernel H of χ corresponds to $K = E^H$ with K/F cyclic of degree dividing n. By the previous proposition, there exists some $a = \alpha^n \in \Delta$ such that $K = F(\alpha)$. Then $a \mapsto \chi_a$. Then χ is some power of χ_a . So this map is onto, as well.

We have a map $\operatorname{Gal}(E/F) \to \operatorname{Hom}(\Delta/(F^{\times})^n, \mu_n)$ sending $\sigma \mapsto (a \mapsto \chi_a(\sigma))$. Then $\sigma \mapsto 1$ iff $\sigma|_{\Delta} = \operatorname{id}|_{\Delta}$, which is equivalent to $\sigma|_K = 1$ for all cyclic K/F in E. This is equivalent to $\sigma = 1$. This is an injective map between groups of the same order, so it is onto.

24.3 Solvability by radicals

Definition 24.4. A finite field extension is **solvable by radicals** if there exists $s \ge 0$ and fields E_i with $0 \le i \le s$ such that

- 1. $E_0 = F$,
- 2. $E_{i+1} = E_i(n_i \sqrt{a_i}) a_i \in E_i^{\times}, n_i \ge 1$
- 3. $E_s \supseteq E$.

If $E_s = E$, then we call E a radical extension.⁴

Theorem 24.2. If $f \in F[x]$ is nonconstant with splitting gield K of degree prime to char(F), then Gal(K/F) is solvable if and only if K/F is solvable by radicals.

⁴We do this because E is just so cool.

25 Solvability by Radicals and Integral Extensions

25.1 Solvability by radicals

Theorem 25.1. Let $f \in F[x]$ be nonconstant with splitting field K of degree not divisible by char(F). Then K is solvable by radicals if and only if Gal(K/F) is solvable.

Proof. Let n = [K : F], let $L = K(\zeta_n)$, and let $E = F(\zeta_n)$, where $\langle \zeta_n \rangle = \mu_n$. We claim that K/F is solvable by radicals iff L/E is solvable by radicals. For (\Longrightarrow) , we adjoin the same roots of unity. For (\Leftarrow) , if L/E is solvable by radicals, then L/F is solvable by radicals. Then K/F is solvable by radicals because $K \subseteq L \subseteq K_s(\zeta_n)$ (where K_s is as in the definition of solvability by radicals).

Now $\operatorname{Gal}(L/E) \cong \operatorname{Gal}(K/K \cap E) \leq \operatorname{Gal}(K/F)$, so if $\operatorname{Gal}(K/F)$ is solvable, then $\operatorname{Gal}(L/E)$ is solvable. Conversely, since $\operatorname{Gal}(L/E)$ is solvable, and since $\operatorname{Gal}(K \cap E/F) \subseteq \operatorname{Gal}(E/F)$ is abelian, $\operatorname{Gal}(L/F)$ solvable $\Longrightarrow \operatorname{Gal}(K/F)$ is solvable.

So we may assume that $\zeta_n \in F$. Suppose K/F is solvable by radicals. There exists $L \supseteq L$ such that L/F is a radical extension. Exercise: we may choose L such that L/F is Galois. (The idea for this is to show that the normal closure of L/F is still radical.) The Gal(L/F) is salvable since we have fields $F = L_0 \subseteq L_0 \subseteq L_1 \subseteq \cdots \subseteq L_s = L$, such that each L_i/L_{i-1} is abelian, and L_i/F is Galois.

Suppose $\operatorname{Gal}(K/F)$ is solvable. Then there exist intermediate fields K_i/F which are normal and $K_s = K$ such that each $\operatorname{Gal}(K_{i+1}/K_i)$ is finite and abelian (given by adjoining *n*-th roots of elements in the previous field). So K/F is solvable by radicals.

Corollary 25.1. If char(F) $\nmid 6$ and K is the splitting field of an irreducible polynomial of degree ≤ 4 , then K/F is solvable by radicals.

Why 4? This is because A_5 is the smallest nonsolvable group.

Example 25.1. $f = 2x^5 - 10x + 5$ has Galois group S_5 . It is irreducible by Eisenstein's criterion. It has 3 real roots.

25.2 Integral extensions

Let B be a commutative ring, and let A be a subring of B. B/A is an extension of commutative rings.

Definition 25.1. We say $\beta \in B$ is **integral** over A if β is the root of a monic polynomial in A[x].

Example 25.2. Any element $a \in A$ is integral over a, as it is the root of x - a.

Example 25.3. Let L/K be an extension of fields. If β is algebraic over K, then β is integral over K, as it is the root of its minimal polynomial.

Example 25.4. $\sqrt{2}$ is integral over \mathbb{Z} as the root of $x^2 - 2$.

Example 25.5. $(1-\sqrt{5})/2$ is integral over \mathbb{Z} as the root of $x^2 - x - 1$.

Example 25.6. 1/2 is not integral over \mathbb{Z} . Let $f = \sum_{i=1}^{n} a_i x^i$ with $a_n = 1, a_i \in \mathbb{Z}$. Then $f(1/2) \in (1/2)^n + (1/2^{n-1})\mathbb{Z}$, so $f(1/2) \neq 0$.

Definition 25.2. $\beta \in \overline{\mathbb{Q}} \subseteq \mathbb{C}$ is an **algebraic integer** if it is integral over \mathbb{Z} .

Definition 25.3. A number field is a finite extension of \mathbb{Q} .

Proposition 25.1. Let $\beta \in B$. The following are equivalent.

- 1. β is integral over A.
- 2. There exists $n \ge 1$ such that $\{1, \beta, \dots, \beta^{n-1}\}$ generates $A[\beta]$ as an A-module.
- 3. $A[\beta]$ is finitely generated as an A-module.
- 4. There exists an $A[\beta]$ -submodule M of B that is finitely generated over A and faithful (*i.e.* $\operatorname{Ann}_{A[\beta]}(M) = 0$).

Proof. (1) \implies (2): There exists a monic $f \in A[x]$ of degree n with $f(\beta) = 0$. Then $f(x) = x^n + \sum_{i=1}^{n-1} a_{-i} - 1x^i$, so $\beta^n = -\sum_{i=1}^{n-1} a_{i-1}\beta^i \in A(1, \beta, \dots, \beta^{n-1})$. By recursion, $\beta^m \in A(1, \beta, \dots, \beta^{n-1})$ for all $M \ge n$. So $A[\beta]$ is generated by $\{1, \beta, \dots, \beta^{n-1}\}$ as an A-module.

- (2) \implies (3): This is a special case.
- (3) \implies (4): Let $M = A[\beta]$. Then $\operatorname{Ann}_{A[\beta]}(A[\beta]) = 0$ since $A[\beta]$ is free over $A[\beta]$.

(4) \implies (1): $M = \sum_{i=1}^{n} A\gamma_i \subseteq B$ for some $\gamma_i \in B$. Without loss of generality, suppose $\beta \neq 0$. Then $\beta\gamma_i = \sum_{j=1}^{n} a_{i,j}\gamma_j$, where $a_{i,j} \in A$. So we can form a linear transformation $T: A^n \to A^n$ by $[T]_{i,j} = a_{i,j}$. Then $f = c_T(x)$. Since $f(\beta): M \to M$ is 0 and M is faithful, $f(\beta) = 0$.

Example 25.7. $1/2 \in \mathbb{Q}$ is not integral over \mathbb{Z} since $\mathbb{Z}[1/2]$ is not \mathbb{Z} -finitely generated.

Definition 25.4. B/A is an integral extension if every $\beta \in B$ is integral over A.

Example 25.8. $\mathbb{Z}[\sqrt{2}]/\mathbb{Z}$ is an integral extension. It suffices to show that $\alpha = a + b\sqrt{2}$ is always the root of a polynomial. Take the polynomial $x^2 + 2az + (a^2 - 2b^2)$.

Example 25.9. Let B be a finitely generated A-module, and let M be a finitely generated B-module. Then M is a finitely generated A-module.

Next time, we will prove the following.

Proposition 25.2. Let $B = A[\beta_1, \ldots, \beta_n]$. The following are equivalent.

- 1. B is integral over A.
- 2. Each β_i is integral over A.
- 3. B is finitely generated as an A-module.

26 Integral Extensions and Integral Closure

26.1 Towers of integral extensions

Proposition 26.1. Let $B = A[\beta_1, \ldots, \beta_n]$. The following are equivalent.

- 1. B is integral over A.
- 2. Each β_i is integral over A.
- 3. B is finitely generated as an A-module.

Proof. (1) \implies (2): This is by definition.

(2) \implies (3): Recall the lemma that if *B* is a finitely generated *A*-module and *M* is a finitely generated *B*-module, then *M* is a finitely generated *A*-module. So it is enough to show (by recursion) that $A[\beta_1, \ldots, \beta_{j+1}]$ is finitely generated over $A[\beta_1, \ldots, \beta_j]$ for all $0 \le j \le k - 1$. So we reduce to the case $B = A[\beta]$, where β is integral over *A*. By a proposition from last time, *B* is finitely generated over *A*.

(3) \implies (1): *B* is a faithful *B*-module, and it is finitely generated over *A*. Take $\beta \in B$. Then *B* is an $A[\beta]$ -submodule of *B* that is faithful and finitely generated over *A*, so β is integral over *A* (by the same proposition from last time).

Proposition 26.2. If B/A and C/B are integral, then so is C/A.

Proof. Let $\gamma \in C$. There exists a monic $f \in B[x]$ with γ as a root. Let B' be the Asubalgebra of B generated by the coefficients of f. By the previous proposition, B' is finitely generated as an A-module. Then $B'[\gamma]/B'$ is integral, so $B[\gamma]$ is finitely generated as a B' module. Then $B'[\gamma]$ is finitely generated as an A-module. Thus, γ is integral over A. So C is integral over A.

26.2 Integral closure

Definition 26.1. The integral closure of A in B is the subset of elements in B integral over A.

Proposition 26.3. The integral closure of A in B is an A-subalgebra of B.

Proof. Look at $A[\alpha, \beta]$, where $\alpha, \beta \in B$ are integral over A. This is integral over A. So $\alpha - \beta$ and $\alpha\beta$ are integral over A.

Example 26.1. The integral closure of \mathbb{Z} in \mathbb{Q} is \mathbb{Z} .

Example 26.2. The integral closure of \mathbb{Z} in $\mathbb{Z}[x]$ is \mathbb{Z} .

Example 26.3. The integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{2})$ is $\mathbb{Z}[\sqrt{2}]$.

Definition 26.2. The ring of integers O_K of a number field K is the integral closure of \mathbb{Z} in K.

Remark 26.1. Integral closure as we have defined it is not absolute. It is relative to the larger ring B.

Definition 26.3. A domain A is **integrally closed** if it is its own integral closure in its quotient field.

Example 26.4. \mathbb{Z} is integrally closed.

Example 26.5. Any field is integrally closed.

So this is not the same notion as algebraically closed.

Proposition 26.4. Let A be an integrally closed domain (resp. UFD). Let K = Q(A), and let L/K be a field extension. If $\beta \in L$ is integral over A with minimal polynomial $f \in K[x]$, then $f \in A[x]$.

Proof. Let A be integrally closed. Let $g \in A[x]$ be monic, having β as a root. Then $f \mid g$ in K[x]. Every root of g in \overline{K} (algebraic closure) is integral over A. In $\overline{K}[x]$, $f(x) = \prod_{i=1}^{n} (x - \beta_i)$, where the β_i are integral over A. So all coefficients of f are integral over A and are in K. So $f \in A[x]$, as A is integrally closed.

Let A be a UFD. There exists a $d \in K$ such that $df \mid g$ (since A is a UFD). f is monic, so $d \in A$. g is monic, so $d \in A^{\times}$. So $f \in A[x]$.

Corollary 26.1. UFDs are integrally closed.

Proof. Let A be a UFD, and let $a \in K = Q(A)$ be integral over A. $x - a \in K[x]$ is the minimal polynomial. By the proposition, $x - a \in A[x]$. So $a \in A$.

Example 26.6. $\mathbb{Z}[\sqrt{17}]$ is not integrally closed. $\alpha = (1 + \sqrt{17})/2$ satisfies $x^2 - x - 4$. So $\mathbb{Z}[\sqrt{17}]$ is not a UFD.

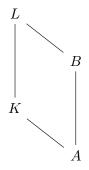
Proposition 26.5. The integral closure of an integral domain A in an integrally closed extension B/A is integrally closed.

Proof. Let \overline{A} be the integral closure of A in B. Let $Q = Q(\overline{A})$ be the quotient field of \overline{A} . Let $\alpha \in Q$ be integral over \overline{A} . $\overline{A}[\alpha]/\overline{A}$ is integral (by a previous proposition). Also, \overline{A}/A is integral, so $\overline{A}[\alpha]/A$ is integral. So α is integral over A, and $\alpha \in B$, so $\alpha \in \overline{A}$.

Example 26.7. Let $\overline{\mathbb{Z}}$, the algebraic integers, be the integral closure of \mathbb{Z} in $\overline{\mathbb{Q}} \subseteq \mathbb{C}$. Then $\overline{\mathbb{Z}}$ is integrally closed.

Example 26.8. Let $K \subseteq \overline{\mathbb{Q}}$ be a number field. Then the ring of integers, $O_K = \overline{Z} \cap K$, is integrally closed.

Proposition 26.6. Let A be an integrally closed domain with quotient field K. Let L be an algebraic extension of K. Then the integral closure of B of A in L has quotient field L.



In fact, if $\beta \in L$, then $\beta = b/d$ with $b \in B$, $d \in A$.

Proof. Let $\beta \in L$ be a root of $f = \sum_{i=0}^{n} a_i x_i \in K[x]$, where $a_n = 1$. Let $d \in A \setminus \{0\}$ be such that $df \in A[x]$. Consider $g = d^N f(d^{-1}x) = \sum_{i=0}^{n} d^{n-i}a_i x^i \in A[x]$ is monic, and $g(d\beta) = 0$. So $d\beta \in B$. Since $b := d\beta \in B$, $\beta = b/d$.

Theorem 26.1. Let d > 1 be squarefree.

$$O_{\mathbb{Q}(\sqrt{d})} = \begin{cases} \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & d \equiv 1 \pmod{4} \\ \mathbb{Z}[\sqrt{d}] & d \equiv 2, 3 \pmod{4}. \end{cases}$$

Proof. Let $\alpha = a + b\sqrt{d} \in O_{\mathbb{Q}(\sqrt{d})}$, where $a, b \in \mathbb{Q}$. If b = 0, then $a \in \mathbb{Z}$. If $b \neq 0$, then α has a minimal polynomial $f = x^2 - 2ax + (a^2 - b^2d)$. α is integral, so $f \in \mathbb{Z}[x]$. So $2a \in \mathbb{Z}$. We have 2 cases:

- 1. If $a \in \mathbb{Z}$, then $b^2 d \in \mathbb{Z}$. This implies $b \in \mathbb{Z}$, since d is squarefree.
- 2. If $a \notin \mathbb{Z}$, then $2a = a', 2b = b' \in \mathbb{Z}$, where a', b' are odd. Then $a^2 b^2 d = \frac{(a')^2 (b')^2 d}{4} \in \mathbb{Z}$. So $(a')^2 \equiv (b')^2 d \pmod{4}$. The only squares in $\mathbb{Z}/4\mathbb{Z}$ are 0 and 1. So $f \equiv 1 \pmod{4}$. In this case, check that $\frac{1+\sqrt{d}}{2}$ is integral.

27 Ideals of Extensions of Rings

27.1 The going up theorem

Suppose B/A is an extension of commutative rings. How do ideals of A and ideals of B compare? If we have an ideal \mathfrak{a} of A, then $\mathfrak{a}B$ is an ideal of B. We can go back by sending $\mathfrak{b} \mapsto \mathfrak{f} \cap A$.

Definition 27.1. We say an ideal $\mathfrak{b} \subseteq B$ lies over $\mathfrak{a} \subseteq A$ if $\mathfrak{b} \cap A = \mathfrak{a}$.

If \mathfrak{p} is prime, then $\mathfrak{p}B$ need not be prime.

Example 27.1. Extend \mathbb{Z} to $\mathbb{Z}[\sqrt{2}]$. Then $(2) \mapsto 2\mathbb{Z}[\sqrt{2}] = (sqrt2)^2$. However, if $\mathfrak{q} \subseteq \mathbb{Z}[\sqrt{2}]$ is prime, then $\mathfrak{q} \cap \mathbb{Z}$ is prime in \mathbb{Z} .

Proposition 27.1. Let B/A be an extension of commutative rings.

- 1. If $\mathfrak{b} \subseteq B$ lies over $\mathfrak{a} \subseteq A$, then A/\mathfrak{a} injects into B/\mathfrak{b} .
- 2. If $S \subseteq A$ is a multiplicatively closed subset and B/A is integral, then so is $S^{-1}B/S^{-1}A$.
- 3. If B/A is integral and A is a field, then so is B.

Proposition 27.2. Suppose B/A is integral. If $\mathfrak{p} \subseteq A$ is prime, then there exists a prime $\mathfrak{q} \subseteq B$ lying over \mathfrak{p} .

Proof. Consider $S_{\mathfrak{p}} = A \setminus \mathfrak{p}$. Let $B_{\mathfrak{p}} := S_{\mathfrak{p}}^{-1}B$; this is integral over $A_{\mathfrak{p}}$. Let $\mathfrak{M} \subseteq B_{\mathfrak{p}}$ be maximal. Then $\mathfrak{m} = \mathfrak{M} \cap A_{\mathfrak{p}}$ is maximal: $A/\mathfrak{m} \to B/\mathfrak{M}$ is an injection, so by the 1st property, A/\mathfrak{m} is a field. So $\mathfrak{p} = A_{\mathfrak{p}}$. Let $\iota : B \to B_{\mathfrak{p}}$. Then $q = \iota^{-1}(\mathfrak{M})$, so \mathfrak{q} is prime. Then $\mathfrak{q} \cap A = \iota^{-1}(\mathfrak{M}) \cap A = \iota^{-1}(A_{\mathfrak{p}})\iota^{-1}(\mathfrak{p}A_{\mathfrak{p}}) = \mathfrak{p}$.

Theorem 27.1 (going up theorem). Let B/A be integral. Let $\mathfrak{p}_1 \subseteq \mathfrak{p}_2$ be primes of A, and let $\mathfrak{q}_1 \subseteq B$ be lying over \mathfrak{p}_1 . Then there exists a prime $\mathfrak{q}_2 \subseteq B$ with $\mathfrak{q}_2 \supseteq \mathfrak{q}_1$ such that \mathfrak{q}_2 lies over \mathfrak{p}_2 .

Proof. Let $\overline{A} = A/\mathfrak{p}_1$, and let $\overline{B} = B/\mathfrak{q}_1$. Let $\pi : B \to \overline{B}$ be the quotient map. Let $\overline{\mathfrak{p}_2} := \pi(\mathfrak{p}_2)$. $\overline{B}/\overline{A}$ is integral, so there exists aprime $\overline{\mathfrak{q}_2}$ of \overline{B} lying over $\overline{\mathfrak{p}_2}$. Then $q_2 = \pi^{-1}(\overline{\mathfrak{q}_2}) \supseteq \mathfrak{q}_1$. Then $\mathfrak{q}_2 \cap A = \pi^{-1}(\overline{\mathfrak{q}_2} \cap \overline{A}) = \pi^{-1}(\overline{\mathfrak{p}_2}) = \mathfrak{p}_2$ since $\mathfrak{p}_2 \supseteq \mathfrak{p}_1$. \Box

27.2 The going down theorem

Proposition 27.3. Let B/A be an extension, and let B' be the integral closure of A in B. Then for any multiplicatively closed $S \subseteq A$, $S^{-1}B'$ is the integral closure of $S^{-1}A$ in $S^{-1}B$.

That is, integral closure is preserved by localization.

Proof. If $b/s \in S^{-1}B$ is integral over $S^{-1}A$, there exists a monic $f \in S^{-1}A[x]$ f(b/s) = 0. Write $f = x^n + \sum_{i=0}^{n-1} \frac{a_i}{s_i} x^i$ with $a_i \in A$, $s_i \in S$. Set $t = s_0 \cdots s_{n-1}$. Then $(st)^n f(x/ts) \in A[x]$ has root $x = bt \in B'$. So $s^{-1}b = s^{-1}t^{-1}x$ in $S^{-1}B'$.

In commutative algebra, we often study what properties are local. For example, we showed earlier that a module is zero iff its localizations at all maximal or all prime ideals are zero.

Proposition 27.4. Let A be an integral domain. The following are equivalent.

- 1. A is integrally closed.
- 2. $A_{\mathfrak{p}}$ is integrally closed for all prime ideals $\mathfrak{p} \subseteq A$.
- 3. $A_{\mathfrak{m}}$ is integrally closed for all maximal ideals \mathfrak{m} of A.

Proof. Let \overline{A} be the integral closure of A in Q(A). Then $A = \overline{A}$ iff $\overline{A}/A = 0$. This is an A-modules, so this happens iff $(\overline{A}/A)_{\mathfrak{p}} = 0$ for all \mathfrak{p} . Observe that $(\overline{A}/A)_{\mathfrak{p}} = \overline{A}_{\mathfrak{p}}/A_{\mathfrak{p}}$, where $\overline{A}_p = S_{\mathfrak{p}}^{-1}A$ is the integral closure of $A_{\mathfrak{p}}$.

Theorem 27.2 (going down theorem). Let B/A be an integral extension of integral domains such that A is integrally closed. Let $\mathfrak{p}_2 \subseteq \mathfrak{p}_1$ be primes of A, and let $\mathfrak{q}_1 \subseteq B$ be lying over \mathfrak{p}_1 . Then there exists a prime $\mathfrak{q}_2 \subseteq B$ with $\mathfrak{q}_2 \subseteq \mathfrak{q}_1$ such that \mathfrak{q}_2 lies over \mathfrak{p}_2 .

27.3 Integral extensions in extensions of the quotient field

Let A be an integral domain, and let K = Q(A). Let L be a finite, separable extension of K, and let B be the integral closure of A in L. Then

Lemma 27.1.

$$\operatorname{Tr}_{L/K}(B) \subseteq A, \qquad N_{L/K}(B) \subseteq A.$$

Proof. The minimal polynomial f of $\beta \in B$ lies in A[x]. Then $f = x^n - \text{Tr}_{L/K}(\beta)x^{n-1} + \cdots + (-1)^{n-1}N_{L/K}(\beta)$.

Proposition 27.5. There exists an ordered basis $\{\alpha_1, \ldots, \alpha_n\}$ of L/K contained in B^n . Set $d = D(\alpha_1, \ldots, \alpha_n)$ and $M = \sum_{i=1}^n A\alpha_i$. Then $M \subseteq B \subseteq d^{-1}M$.

Proof. Start with a basis $\{\beta_1, \ldots, \beta_n\}$ of L/K. Recall that each $\beta_i = b_i/a_i$ with $b_i \in B$ and $a_i \in A$. So multiplying through by a_1, \ldots, a_n , we have a basis of L/K in B^n .

Given $\{\alpha_1, \ldots, \alpha_n\}$, any $\beta \in L$ has the form $\beta = \sum_{i=1}^n c_i \alpha_i$, where $c_i \in K$. Suppose $\operatorname{Tr}_{L/K}(\alpha\beta)$ in A for all $\alpha \in B$ (e.g. this holds if $\beta \in B$ by the lemma). Consider $A \ni$

 $\operatorname{Tr}_{L/K}(\alpha_i\beta) = \sum_{j=1}^n c_j \operatorname{Tr}_{L/K}(\alpha_i\alpha_j)$. Note that $\operatorname{Tr}_{L/K}(\alpha_i\alpha_j)$ is the (i,) entry of $Q = (\operatorname{Tr}_{L/K}(\alpha_i\alpha_j))$. Then $Q^* = \operatorname{adj}(Q)$, and $QQ^* = dI_n$. So we get

$$QQ^*\begin{bmatrix}c_1\\\vdots\\c_n\end{bmatrix} = \begin{bmatrix}dc_1\\\vdots\\dc_n\end{bmatrix} \in A^n.$$

So we get $d\beta = d\sum_{i=1}^{n} a_i \alpha_i = \sum_{i=1}^{n} A\alpha_i = M$. Then $dB \subseteq M$, so $B \subseteq d^{-1}M$.

Remark 27.1. If B is Noetherian, then M is a finitely generated torsion-free B-submodule of L. If B were a PID, then we would get that M is free.

Now assume K/Q is a finite extension. We could define $\operatorname{disc}(K) = \operatorname{disc}(\operatorname{basis} \operatorname{of} O_K/\mathbb{Z})$. This is actually independent of basis.